您当前的位置: 首页 > 微藻燃料科技动态情报产品详情

2021年第2期  (2021-1-10 王阳)       全选  导出

1 微藻生物膜培养装置的研究进展 2021-01-10

1绪论 微藻生长速度快且含有丰富的营养物质,可作为各类高附加值生物产品(如生物柴油、生物饲料等)的原料,因此其工业化培养越来越受到人们重视。悬浮培养是目前应用最广泛的微藻培养方式,其代表性装置为开放跑道池和各种密闭的光反应器。RWP操作方便,结构简单,运营和投资的成本低,是微藻商业化生产的主要设施。但RWP存在许多不足,例如生物量生产率低;水分蒸发严重;极易受到污染等。针对RWP的缺点,研究者开发出了各种PBR,根据形状可分为管状光生物反应器、平板光生物反应器和箔状光生物反应器。PBR对养分、光照和温度等参数的有效控制显著提高了微藻的生产效率;封闭的空间避免了外界环境对微藻培养液的污染和水分的大量蒸发。但PBRs过高的表面积体积比导致了反应器内严重的光抑制和氧气积聚;技术的复杂性又导致建设和运营成本高昂。由于缺乏高效、低成本的大规模种植技术,目前以微藻为原料生产各类产品并不具备经济可行性。 近年来,一种新的微藻培养模式一一生物膜培养引起了人们的极大兴趣。在这种培养模式中,微藻细胞附着在固体基质表面以生物膜的形式生长,培养装置运行稳定性高且需水量低,在微藻生物膜生长成熟后,可直接通过机械手段刮取藻细胞,操作简单,技术难度低,可使采收成本大幅度降低。本文分类介绍了目前常见的微藻生物膜培养装置,总结了其在微藻培养及污水处理领域的优势,并对其未来的发展方向进行了讨论。 2藻类生物膜培养装置 微藻生物膜培养装置是微藻生物膜技术由理论研究迈向工业化生产所需的条件。为了使微藻生物膜培养装置的性能达到工业化生产的要求,研究者设计了各种类型的反应器。目前常见的藻类附着培养装置有藻萍净水系统ATS、旋转光生物反应器RAB、多孔介质光生物反应器以及附着-悬浮光生物反应器。 2.1,藻萍净水系统 image.png 图1:藻萍净水系统 ATS装置是最早出现的微藻生物膜培养装置,这种满液式的连续流反应器结构简单,运行稳定,利用水泵驱动培养液在生物膜表面流过,借助水流的扰动打破气液界面的扩散边界层,增加CO2和养分的传输效率。但是流经生物膜表面的水层也会导致光的散射,降低了光能利用率。 ATS在污水厂出水深度处理,养殖废水处理及农业用水处理等方面应用都十分广泛。 2.2、旋转光生物反应器 image.png 图2:旋转光生物反应器 根据旋转生物接触器的原理,研究者设计了如图2所示的旋转藻盘光生物反应器。通过电机带动圆盘旋转,使藻细胞周期性地与培养液和空气接触,当藻细胞浸入培养液时,吸收营养基内的营养物质;当藻细胞进入空气时,直接从空气中吸收二氧化碳和光能。这种培养方式提高了微藻在载体上的牢固性,更有利于微藻生物质的积累。 基于Algadisk的原理,研究者开发了中试规模的旋转光生物反应器,并将其与污水处理联合,利用污水中的氮、磷等元素作为营养物来源,不但降低培养成本,也能对污水进行净化。Logan等人发明了旋转筒式藻类生物膜反应器,利用缠绕了绳索的滚筒状不锈钢框架代替了旋转藻盘光生物反应器中的圆形转盘,微藻细胞附着在绳索上生长。当生物膜达到一定厚度后利用配套的收割装置挤压绳子收获藻类生物量,一定程度上实现了微藻生物膜的机械化收获。Wen等人开发出了一种旋转辊轴藻类生物膜反应器,将载体材料缠绕到两个辊轴上,通过辊轴的转动带动载体转动。 2.3、多孔介质光生物反应器 image.png 图3:多孔介质光生物反应器 PSBR反应器(图3-a最初被用作藻类生物传感器,但后来被广泛应用于微藻培养。PSBR反应器由多个竖直单元平行排列组成,每个单元由微藻附着层和多孔介质营养供给层构成。培养液在泵的驱动下在多孔介质层内循环,在毛细力和重力的作用下扩散到微藻附着层,微藻源源不断的获得营养物质进行生长。PSBR反应器的优势在于, 1)通过各单元的竖直布置解决了培养系统占地面积的问题,大大提高了单位土地面积上微藻生物质的生产力; 2)微藻生物膜直接暴露在空气中,更有利于CO2和光照的传递,还可以根据光照强度调节各垂直单元之间的距离,避免光限制或光抑制现象; 3)微藻生物膜不直接和培养液接触,完全避免了水流对生物膜的冲刷作用。 目前大部分的PSBR装置营养基的循环通过泵驱动,这是除了微藻收获外最大的能源消耗工序。研究者依据植物的蒸腾作用开发了一种新型的PSBR装置图3-b,利用蒸腾力和毛细力驱动营养物质在多孔介质层的传输,在能源节约方面有重大意义。然而,目前这种类型的PSBR反应器并不是十分完善,存在着由于营养物质传输不足导致微藻生物量生产力低下的问题。 2.4附着一层悬浮光生物反应器 根据活性污泥法中流化床和固定床的原理,一些研究者通过额外投加载体的方式对藻类悬浮培养装置进行了强化,得到了一些悬浮与附着相结合的光生物反应器。Zhang等将珊瑚绒材料作为载体强化跑道池处理生活污水,COD,TN,TP的去除率分别可达86.61%,73.68%,89.85%,最高生物质生产力可达8.1 g·m-2·d。Zhuang等将亚麻载体投加到PBR反应器中,发现载体的加入使微藻生物量最大增加30%。 适量的载体的加入并不会对反应器中悬浮生长的藻类产生光抑制,研究表明附着一悬浮光生物反应器中悬浮生长的藻类生物量生产力与单纯的悬浮培养体系差距不大,因此附着在载体上的藻类生物量可以看作微藻生物量的增量。除此之外,随着载体的加入,曝气产生的气泡在反应器中的停留时间大大增加,提高了二氧化碳的利用效率,这也是附着一悬浮光生物反应器生物量产率提高的原因之一。 3、微藻生物膜培养装置的优势 微藻生物膜培养装置的可以有效避免悬浮培养装置中诸如CO2传质效率低,光和水利用效率低,藻细胞收获困难等一系列问题。 3.1 CO2传质效率高 在悬浮培养装置中,液体培养基将微藻细胞与周围的气相分离,必须克服气液界面才能进入培养液中被藻类细胞利用。由于较低的传质效率,悬浮培养装置中培养液CO2浓度对微藻细胞的生长有显著影响。目前大多通过曝气或搅拌的方式为微藻生长提供充足的无机碳源,但这样做不仅会增加生产成本,强搅拌或曝气带来的水流剪切力也会干扰微藻的生长。微藻生物膜培养装置中藻细胞可以长期或间歇性的暴露在空气中直接接触气态CO2,扩散路径短,传质效率高,有效解决了CO2供应问题。研究发现在没有CO2供应装置的微藻生物膜培养装置中微藻依旧可以快速生长。这可能是微藻生物膜中CO2传质效率高,即使在较低的CO2浓度水平下,微藻仍能从气相吸收足够的CO2作为碳源。 3.2、光照利用效率高 在悬浮培养装置中,约10%的总入射可见辐射光因为反射在水-空气表面消散,光照利用效率不高。在微藻生物膜培养装置中,藻细胞长期或间歇性暴露在空气中,这部分光损失可以被微藻有效捕获用于光合作用。其次,由于光照直接作用于藻细胞,悬浮培养中普遍存在的光穿透问题也在微藻生物膜培养装置中得到了很大的缓解。 3.3、水的利用效率高 对微藻工业化生产来说,巨大的用水量是一个难以承受的负担。相关研究表明在悬浮培养装置中生产1吨微藻要消耗200吨的水。但在微藻生物膜培养装置中,仅需少量培养基流经生物膜表面即可维持微藻正常生长,这为大幅度降低藻类培养的需水量提供了可能。Ozkan等研究发现使用附着培养装置生产1kg的微藻需要约1600 L的水,与开放池塘相比减少了45%。Gross等在能量平衡分析的基础上,建立了RAB系统蒸发失水模型,并进行了实验验证,虽然RAB的蒸发损失较高,但每单位生物量的耗水量仅为跑道池的26%。 3.4、土地利用率高 相比于悬浮培养装置,微藻生物膜培养装置独特的几何结构会大幅度提高土地利用率。在悬浮培养装置中,因为光的穿透限制,水的深度有限,垂直方向的空间难以有效利用。微藻生物膜培养装置多采用平行竖直布置,单位土地面积上的生物培养面积远超过悬浮培养装置,显著提高了土地的空间利用效率。这意味着在相同面积的土地上微藻生物膜培养装置拥有更高的生物量生产力和废水处理能力。Liu等研究发现以生物膜形式培养的微藻单位面积生产力能达到50-80 g·m-·d,是生物量生产力是悬浮培养的4-7倍,这在土地紧张的地区意义重大。 藻类被广泛认为可以有效去除生活污水中的营养物质,然而城市有限且昂贵的土地限制了藻类悬浮培养装置在污水处理中的应用。微藻生物膜培养装置较高的土地利用效率为藻类在污水处理领域的实际应用提供了可能。 3.5、微藻收集方便 悬浮培养装置中藻细胞密度非常低,RWP中藻类细胞浓度仅为0.5 g/L(藻类干重0.05%或含水量99.95%)。PBRs中约为2-6 g/L(藻类干重0.2-0.6%或含水量99.4%一99.8%)。此外藻细胞密度与水相近,尺寸仅微米大小(2-30μm)。这导致从悬浮培养系统中收获藻类是一件非常困难的事情。目前常用的絮凝沉降-离心工艺需消耗大量的能量和时间才能收获藻类’。最近一项关于微藻生产生物燃料的技术经济研究报告表明,从悬浮培养基中收获藻细胞的花费占总成本的20%。除此之外,有研究表明化学絮凝剂的大量使用还会对藻细胞和环境造成破坏。 为了降低成本,研究者又开发了基于藻类一细菌、藻类一真菌或藻类一藻类相互作用的生物絮凝技术。这种方法可以高效且节能的捕获悬浮藻细胞,而且一般不会造成二次污染。但生物絮凝同样存在不足之处,如果使用细菌或真菌促进藻类絮凝,在收获的藻类中往往会含有一定数量的细菌或真菌,目前的技术水平无法将细菌或真菌和藻类有效分离,收获的藻类仅能用来生产生物燃料,无法用来生产各种高附加值的生物产品。藻类一藻类生物絮凝不需要对收获的藻细胞进行分离处理,但具有自絮凝能力的微藻种类和数量并不是很多,往往需要对非絮凝藻株进行基因工程改造,这又对生态安全造成了潜在威胁。 在微藻生物膜培养装置中,微藻附着在材料表面以生物膜的形式生长,天然地与培养基分离,可以通过机械刮取的方式收获,不需要离心等高能耗过程。研究表明刮取收获的生物质中藻细胞含量约为10%-20%,与悬浮培养絮凝一离心步骤处理后的藻液浓度相近,完全可以满足下游处理的需要4、微藻生物膜培养装置在水处理领域的应用 Pittman等人回顾了藻类生物燃料生产的潜力,认为基于目前的技术,不使用废水的藻类养殖不具有经济可行性。Lundquist等人分析了藻类废水处理与生物燃料生产的几种不同案例,认为只有使用废水作为培养基才能生产具有成本竞争力的生物燃料。因此微藻生物膜技术在水处理领域的应用前景受到人们的广泛关注,相关研究结果表明在水处理领域微藻生物膜技术比悬浮培养更具潜力,具体表现在以下几方面。 1)微藻生物膜培养装置避免了悬浮培养中普遍存在的冲刷问题。微藻基于同化作用吸收废水中的营养物质,因此反应器中微藻生物量是影响废水处理效率的关键因素。废水中氮磷的浓度远低于BG11等培养基中氮磷的浓度,因此需要高供给流量才能维持微藻的生长,但这也会导致严重的冲刷问题,不利于维持反应器中高生物量和出水水质。在微藻生物膜培养装置中,微藻附着在载体上生长,可以有效地避免冲刷问题,藻类生物量生产力和养分去除效率显著提高 2)微藻生物膜培养装置对污染物的去除效果更强。微藻胞外聚合物为微藻类提供了大量官能团和结合位点,这些官能团及结合位点可以通过静电作用或络合作用与污染物相结合,提高了微藻对污染物具有良好的去除效果。研究表明微藻胞外聚合物含量越高,微藻对污染物的去除效果越强。微藻生物膜系统胞外聚合物的含量远远高于悬浮体系,因此对污染物的去除效果远远超过悬浮藻类。王爱丽等研究了不同生长模式下铜绿微囊藻球对合成污水中污染物的去除,经过5天的处理,生物膜中铜绿微囊藻对合成污水中P的去除率为69.19%;N的去除率达到了92.92%,而悬浮生长的铜绿微囊藻的去除效果相对差很多,P和N的去除率分别只达到了26.77%和36.54%。 微藻生物膜培养装置在处理工业废水时更具优势。黄国兰等研究了蛋白核小球藻对染料深棕NM的去除效果,两天内小球藻生物膜对染料的去除率可达80.5%,而悬浮小球藻仅为18.5%。 3)微藻生物膜培养装置耐冲击负荷强。微藻生物膜培养装置中的微藻及其他微生物聚集成群以生物膜的形式生长,在局部构成了稳定的微环境,对pH,温度、浊度、毒性冲击等的抵抗力远远超过悬浮培养装置。即使在极端胁迫下部分微生物消失,其余的微生物仍然能够存活,从而保证了微藻生物膜在极端环境下的生长。此外,微藻生物膜丰富的胞外聚合物也能够缓解极端环境对微藻细胞的破坏。Orandi等研究发现即使在重金属浓度极高的矿山废水中,以蓝细菌和绿藻为主要物种的生物膜依旧能够存活,并且可以有效吸附废水中的重金属 由于设计原理不同,各种微藻生物膜培养装置适用于不同种类的污水,表1详细介绍了微藻生物膜培养装置在水处理领域的表现。 image.png 5、结论与展望 具有良好性能的微藻生物膜培养装置是微藻工业化生产的必备条件,截止到目前为止已经有很多学者进行了相关研究且取得了颇多的成果,但关于微藻生物膜培养装置的研究还存在一定的局限性,有待进一步的研究。 1)在已报道的微藻附着培养装置中,绝大多数仍处于实验室规模,中试规模的系统到目前为止也非常有限,只有ATS系统得到了商业化应用,到目前为止还无法进行可靠的成本分析。在今后的研究中应着眼于将微藻生物膜培养装置应用于工业化规模的生产环境。 2)目前研究中涉及的各种微藻生物膜培养装置在接种和采收时大量使用人工,仅少部分研究对附着培养的机械自动化操作进行了讨论。在未来更大规模的微藻生物膜培养装置中,自动化机械的引入是必然趋势,关于这方面的研究亟待加强。 3)微藻生物膜培养装置中,载体材料的性能对微藻生物膜的微藻的产量和成本决定性作用。具有高表面能的材料(纸、棉制品等)由于良好的附着性能被广泛地应用在各类附着培养装置上,但这些材料耐久性很差,需要进行频繁的更换,不利于藻类商业化生产。未来规模化的附着培养体系中急需一种兼具良好附着性和耐久性的载体材料。 查看详细>>

编译者:王阳 点击量:46

2 科学家为防疫出力出招 “微藻营养与功能”线上研讨会召开 2021-01-10

2020开年,一场突如其来的新型冠状病毒疫情席卷全球,为人类生命健康及全球经济发展造成了严重影响,对此社会各界纷纷展开行动,从各自的专业领域出发为战胜疫情寻找助力。5月9日,由青岛微藻产业学会与生物学杂志社共同主办了“微藻营养与功能”线上研讨会,是我国微藻产学研各界为应对新冠疫情举办的首次权威学术会议,为微藻营养医学在此期间的进一步落地应用提供了理论基础。作为中国微藻产业的奠基者和领头羊企业,云南绿A生物工程有限公司总经理胡志祥出席会议,并与各位专家分享了螺旋藻相关产品增强免疫力与抗病毒功能的科学实验报告。 本次会议由中国藻业协会微藻分会会长、中国科学院烟台海岸带研究所著名教授秦松主持,汇聚众多微藻领域顶尖专家,包括宁波大学严小军、深圳大学胡章立、华东理工大学李元广、荷兰瓦格宁根大学高风正等知名高校教授和学者,中国科学院合肥物质科学研究院黄青、中国科学院海洋研究所刘建国、水科院黄海水产研究所孙伟红、中国科学院青岛生物能源与过程研究所刘天中、中盐研究院张俊杰等科研院所资深研究员参与本次会议。 当前,我国已经成功遏制了疫情的进一步扩散,然而病毒的威胁还远远没有解决,各大科研机构正在加紧疫苗的研发,在此之前除了依赖外部防护,自身的免疫力则是更有力的防线。免疫力对病毒的感染几率及感染后的病情发展和治愈率都有着决定性的影响,因此近期许多专家都建议公众加强体育锻炼,并更多的摄入高蛋白高营养食物,全面强化自身的免疫能力。而许多种微藻所含有的活性成分,经过国内外科学界多年研究证实在补充人体营养素、提升免疫机能等多个方面具有积极作用,在相关药物的开发领域也具有极大的应用潜力。 本次会议中,在多种形成产业的微藻中,应用最为成熟的螺旋藻和富含天然虾青素的红球藻成为专家关注的重点。中国科学院合肥物质科学研究院黄青和中国科学院海洋研究所刘建国分别就红球藻虾青素的炎症和免疫调节作用分享了最新的研究进展,其中黄青研究员重点针对抗炎症作用进行分析,指出红球藻虾青素在治疗新冠肺炎上的潜在应用;而作为我国螺旋藻产业的原研单位,绿A公司总经理胡志祥向大家介绍了螺旋藻所富含的全面营养素,并通过多年积累的动物实验和医院临床应用统计报告,证实了螺旋藻在免疫调节和抗病毒方面的积极作用。此外,深圳大学胡章立教授和水科院黄海水产研究所孙伟红研究员分别介绍了红球藻硒蛋白的生物功能和红球藻虾青素的检测技术方面的研究。 除了应用相对广泛的螺旋藻和红球藻之外,微藻家族中还有很多具有独特生物价值的种类,与会专家同样进行了深入交流。宁波大学严小军教授介绍了多种微藻独特活性物质的精准功能,并号召学界同仁在分子机制层面进行更加深入的研究;华东理工大学李元广教授和中盐研究院张俊杰教授分别介绍了裸藻和杜氏盐藻的功能及应用;中国科学院青岛生物能源与过程研究所刘天中研究员介绍了一种微藻中的新型生物质OMEGA-7脂肪酸的功能作用研究进展,远在荷兰瓦格宁根大学的高风正博士全面介绍了中国和欧洲微藻产业发展的概况和区别之处,并以国际视角对中国微藻产业发展做出了展望。 本次会议的主持人,中国藻业协会微藻分会会长、中国科学院烟台海岸带研究所秦松表示,在本次会议中,诸位专家就微藻生物研究领域如何助力应对新冠病毒提出了针对性的建议,同时也就微藻产业未来的发展方向提出了目光高远的指导性意见。而包括绿A在内的企业不仅在本次疫情中为积极践行社会公益,也分别从产品和产业层面贡献了宝贵的经验和看法。相信在学界专家和企业领袖的共同推动之下,未来微藻产业产学研将进一步加强联系,融合发展,增强中国微藻尖端研究水平,为公众带来更加高效、精准的功能产品,普及微藻认知,加速产业发展。 查看详细>>

编译者:王阳 点击量:25

3 中国石化成功开发微藻生物质利用成套技术 2021-01-10

谈起微藻,很多人常常联想到湖面上绿油油的浮萍。在诗人的世界里,它无根无依靠,随风东西流。然而,作为世界上最简单也最原始的生物之一,微藻就像一个有待开发的巨大宝藏,经过加工,它能制成保健品、化妆品及高品质饲料等,用途广泛,甚至还能与能源变革产生联系。   多年以来,中国石化石油化工科学研究院微藻生物技术研发团队瞄准微藻高值化利用的方向,锁定微藻用于减排氮氧化物(NOX)和二氧化碳的关键科学问题,开展深入研究,开发了从烟气NOX高效固定、优良藻种选育、微藻规模养殖、采收加工到微藻生物质利用的全产业链成套技术,创新提出微藻脱硝组合工艺,实现改善环境污染与生产生物能源的集成,验证了微藻高值化利用技术路线的可行性。“微藻用于NOX和二氧化碳减排的集成与创新”项目获得中国石化2019年度前瞻性基础性研究一等奖。   基础研究探索本质   能源、环境和食物是人类可持续发展面临的重大问题。化石能源过度使用造成的环境污染日益严重,而现有脱硝技术运行成本高,且存在二次污染等问题。此外,我国还是全球蛋白质原料最大进口国,每年进口大豆近1亿吨,蛋白质原料对外依存度甚至超过石油,开发新的蛋白质来源意义重大。   微藻被称为由阳光驱动的“活化工厂”,可在常温常压条件下,将无机碳、氮高效转化为有机碳(主要为糖类与油脂)和有机氮(主要为蛋白质)。中国石化新能源研究所所长、石科院微藻生物技术研发团队带头人荣峻峰介绍到,微藻易养殖、生长速度快,石油化工企业在生产过程中排放的大量烟气、废水和低温余热,如果能利用起来为微藻生长提供充足营养和适宜温度,再通过微藻减排NOX和二氧化碳,处理废气废水,同时生产微藻生物质,进一步转化为微藻蛋白或微藻生物柴油等高价值生物产品,可谓一举两得。   然而,现有微藻脱硝技术由于尚不成熟,一直无法满足工业应用对效率和稳定性的要求。荣峻峰认为,技术的不成熟,归根到底在于对其基本原理理解得不透彻。从2010年起,荣峻峰和团队开始介入微藻生物技术领域,剖析微藻脱硝技术背后所隐藏的科学本质。   NOX在水中溶解度低,就对氧化体系中NOX的化学吸收过程进行分析,找出提高吸收率的关键点;NOX高效脱除的条件与微藻生长的适宜条件不一致,就将化工过程和生物过程分离,分别进行优化后再结合;微藻对脱硝产物亚硝酸盐耐受性差,就对微藻细胞氮代谢机制进行研究,提高氮转化效率。开展烟气耐受的藻种采集、分离纯化、驯化筛选及性能评价,获得了能高效固定NOX和二氧化碳的优势藻种35株,建立起藻种库。   通过层层分解,团队从反应原理、传递过程及细胞生理状态等不同角度,对NOx固定与微藻生长所涉及的各个环节开展基础研究,充分掌握了实验现象背后蕴含的科学规律。   技术开发锐意创新   有了理论基础的指导,团队开始着手进行技术开发。在建立技术体系之前,首先要确定微藻的养殖模式。   通常微藻养殖分为自养和兼养两种模式:自养即微藻以阳光为能源进行生长,具有成本低、技术简单、易于大规模养殖等优势,但自然光的能量密度低,存在着生长速度慢的缺陷;兼养即微藻同时利用光能和外源有机物作为能源生长,这种模式生长速度快、脱氮效率高,但养殖成本高。两种技术路线各有优劣,到底选择哪种方式更合适?团队中存在不同意见。   关键时刻,荣峻峰带领团队放下了对养殖方式优劣的争论,将目光投向脱硝技术的需求方——污染源。   石油化工技术复杂多样,排放含氮污染物的质与量也有很大差异,单一的技术路线很可能无法满足未来工业化应用对脱硝技术的需求。在对需求进行精准分析后,荣峻峰提出两条路线并行开发的思路:自养适合用于处理低浓度大流量的含氮污染物,兼养则更适合用于处理棘手的高浓度含氮污染物。两种技术路线并行使用,可极大程度提升工艺的适应性,进而提高技术应对复杂市场需求的整体竞争力。   明确了方向后,团队成员迅速开展技术开发与实验室小试、中试研究,在新型光生物反应器、光能兼养技术、微氮刺激技术、养殖液循环利用技术、微藻高效采收与亚临界油脂提取等方面实现创新与突破。再将各单项技术进行有机整合,率先建立了完整的微藻脱硝组合工艺,实现了烟气脱硝与微藻养殖既紧密耦合又独立运转。   截至目前,团队已申请中国专利60件,获授权34件,申请国外专利10件,在美国、日本和欧洲已获授权,构建起完整的专利网。相关研究成果得到可再生能源全球创新组织的肯定,认为“该成果首次提供了一种利用微藻进行实际大规模烟气减排的可能性与工业化策略”。   未来发展生机无限   微藻应用于环境保护是一个典型的跨学科研究课题,涉及化学化工、环境科学与生物技术多个领域。石科院微藻生物技术研发团队的成员也有着丰富的学科背景,有研究微藻出身的科班力量,有工程开发经验丰富的技术专家,还有干了大半辈子石油化工,依然保持着对新领域新知识的渴求,选择踏入微藻行业的“新人”。知识、阅历及经验不同的成员们在一起交融碰撞,形成了一支思路开阔、执行力强、分工明确而又团结互助的优秀队伍。   在传统石化行业眼中,微藻生物技术还是一个新鲜事物。技术好不好用、能不能满足需求、成本效益情况如何,是用户最为关心的问题。而这些问题,都有待于工业示范试验来验证。   目前,微藻脱硝技术正在中国石化催化剂公司长岭分公司、石家庄炼化分公司与湖北化肥分公司开展工业示范试验。为保证试验的顺利进行与数据的完整可靠,团队成员积极投身到一线工作中,长期驻守在试验装置现场,对装置的运行情况进行密切监控,及时解决实验过程中出现的问题。   随着我国生态文明建设不断推进,发展绿色经济、低碳经济、循环经济是大势所趋、潮流所向。展望未来,微藻脱硝技术能够利用污染物生产高价值生物产品,化腐朽为神奇,实现环境保护与社会经济发展的和谐统一,具备无限的潜力。这一方案也将为中国石化践行绿色发展、履行低碳责任,成为循环经济的引领者提供一条颠覆性技术路线,成为“绿水青山就是金山银山”这一科学论断的有力注解。 查看详细>>

编译者:王阳 点击量:38

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190