您当前的位置: 首页 > 资源详情

Medical Xpress,9月13日,Physical distance may not be enough to prevent viral aerosol exposure indoors

编译者:YUTING发布时间:Sep 19, 2021点击量:343 来源栏目:最新研究

Eighteen months ago, stickers began to dot the floors of most shops, spaced about six feet apart, indicating the physical distance required to avoid the COVID-19 virus an infected person may shed when breathing or speaking. But is the distance enough to help avoid infectious aerosols?

Not indoors, say researchers in the Penn State Department of Architectural Engineering. The team found that indoor distances of two meters—about six and a half feet—may not be enough to sufficiently prevent transmission of airborne aerosols. Their results were made available online ahead of the October print edition of Sustainable Cities and Society.

"We set out to explore the airborne transport of virus-laden particles released from infected people in buildings," said Gen Pei, first author and doctoral student in architectural engineering at Penn State. "We investigated the effects of building ventilation and physical distancing as control strategies for indoor exposure to airborne viruses."

The researchers examined three factors: the amount and rate of air ventilated through a space, the indoor airflow pattern associated with different ventilation strategies and the emission mode of breathing versus talking. They also compared transport of tracer gas, typically employed to test leaks in air-tight systems, and human respiratory aerosols ranging in size from one to 10 micrometers. Aerosols in this range can carry SARS-CoV-2.

"Our study results reveal that virus-laden particles from an infected person's talking—without a mask—can quickly travel to another person's breathing zone within one minute, even with a distance of two meters," said Donghyun Rim, corresponding author and associate professor of architectural engineering. "This trend is pronounced in rooms without sufficient ventilation. The results suggest that alone is not enough to prevent human exposure to exhaled aerosols and should be implemented with other control strategies such as masking and adequate ventilation."

The researchers found that aerosols traveled farther and more quickly in rooms with displacement ventilation, where fresh air continuously flows from the floor and pushes old air to an exhaust vent near the ceiling. This is the type of ventilation system installed in most , and it can result in a human breathing zone concentration of viral aerosols seven times higher than mixed-mode ventilation systems. Many commercial buildings use mixed-mode systems, which incorporate outside air to dilute the indoor air and result in better air integration—and tempered aerosol concentrations, according to the researchers.

"This is one of the surprising results: Airborne infection probability could be much higher for residential environments than office environments," Rim said. "However, in residential environments, operating mechanical fans and stand-alone air cleaners can help reduce infection probability."

According to Rim, increasing the ventilation and air mixing rates can effectively reduce the transmission distance and potential accumulation of exhaled aerosols, but ventilation and are only two options in an arsenal of protective techniques.

"Airborne infection control strategies such as physical distancing, and mask wearing should be considered together for a layered control," Rim said.

The researchers are now applying this analysis technique to various occupied spaces, including classrooms and transportation environments.

提供服务:导出本资源
  1. 1 Nature,11月10日,Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility
  2. 2 11月10日_研究人员分析宿主基因对COVID-19严重程度和易感性的影响
  3. 3 11月11日_新冠药物Remestemcel-L二期临床的中期分析结果积极
  4. 4 11月11日_CDC呼吁制定通用口罩规定以减少新冠传播
  5. 5 SSRN,2月20日,Dynamics of the Latest 2019 Novel Coronavirus Disease Epidemic in China: A Descriptive Study
  6. 6 SSRN,2月20日,Mental Health Problems and Social Media Exposure During COVID-19 Outbreak
  7. 7 SSRN,2月20日,Evaluating Incidence and Impact Estimates of the Coronavirus Outbreak from Official and Non-Official Chinese Data Sources
  8. 8 SSRN,2月20日,Clinical Characteristics and Treatment of Patients Infected with COVID-19 in Shishou, China
  9. 9 Nature,11月10日,Mobility network models of COVID-19 explain inequities and inform reopening
  10. 10 1月27日_Nature报道中国新型冠状病毒最新研究进展:病毒传播速度有多快?
  1. 1 10月11日_SARS-CoV-2变体对mRNA疫苗诱导的免疫反应的影响
  2. 2 10月11日_SARS-CoV-2变体对mRNA疫苗诱导的免疫反应的影响
  3. 3 Medicalxpress,10月11日,Vaccines prevent severe COVID, even from Delta: study
  4. 4 10月11日_疫苗接种可预防严重COVID-19
  5. 5 PR Newswire,10月11日,INOVIO Expands INNOVATE Phase 3 for INO-4800, its DNA Vaccine Candidate for COVID-19, to include Colombia following Regulatory Authorization
  6. 6 10月11日_INOVIO扩展其COVID-19疫苗INO-4800的3期研究
  7. 7 ACCESSWIRE,10月11日,NanoViricides Announces COVID-19 Clinical Drug Candidate NV-CoV-2 was Effective Against SARS-CoV-2, Further Demonstrating Its Broad-Spectrum Pan-Coronavirus Activity
  8. 8 10月11日_NV-CoV-2具有广谱的抗冠状病毒活性
  9. 9 CIDRAP,10月11日,Merck applies for approval of first COVID-19 antiviral pill
  10. 10 10月11日_默沙东向FDA申请首款COVID-19抗病毒药丸的EUA

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190