您当前的位置: 首页 > 资源详情

MedicalXpress,8月6日,Potential COVID-19 medication found among tapeworm drugs

编译者:YUTING发布时间:2021-8-16点击量:231 来源栏目:最新研究

A group of medications long prescribed to treat tapeworm has inspired a compound that shows two-pronged effectiveness against COVID-19 in laboratory studies, according to a new publication appearing online in the journal ACS Infectious Disease.

The compound, part of a class of molecules called salicylanilides, was designed in the laboratory of Professor Kim Janda, Ph.D., the Ely R. Callaway, Jr. Professor of Chemistry and director of the Worm Institute for Research and Medicine at Scripps Research, in La Jolla, CA.

"It has been known for 10 or 15 years that salicylanilides work against certain viruses," Janda says. "However, they tend to be gut-restricted and can have toxicity issues."

Janda's compound overcomes both issues, in mouse and cell-based tests, acting as both an antiviral and an anti-inflammatory drug-like compound, with properties that auger well for its use in pill form.

Salicylanilides were first discovered in Germany in the 1950s and used to address worm infections in cattle. Versions including the drug niclosamide are used in animals and humans today to treat tapeworm. They have also been studied for anti-cancer and antimicrobial properties.

The modified salicylanilide compound that Janda created was one of about 60 that he built years ago for another project. When the SARS-CoV-2 virus became a global pandemic in early 2020, knowing that they may have antiviral properties, he started screening his old collection, first in cells with collaborators from Sorrento Therapeutics and The University of Texas Medical Branch, and later, after seeing promising results, working with Scripps Research immunologist John Teijaro, Ph.D., who conducted rodent studies.

One compound stood out. Dubbed simply "No. 11," it differs from the commercial tapeworm medicines in key ways, including its ability to pass beyond the gut and be absorbed into the bloodstream—and without the worrisome toxicity.

提供服务:导出本资源
  1. 1 Nature,11月10日,Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility
  2. 2 11月10日_研究人员分析宿主基因对COVID-19严重程度和易感性的影响
  3. 3 11月11日_新冠药物Remestemcel-L二期临床的中期分析结果积极
  4. 4 11月11日_CDC呼吁制定通用口罩规定以减少新冠传播
  5. 5 SSRN,2月20日,Dynamics of the Latest 2019 Novel Coronavirus Disease Epidemic in China: A Descriptive Study
  6. 6 SSRN,2月20日,Mental Health Problems and Social Media Exposure During COVID-19 Outbreak
  7. 7 SSRN,2月20日,Evaluating Incidence and Impact Estimates of the Coronavirus Outbreak from Official and Non-Official Chinese Data Sources
  8. 8 SSRN,2月20日,Clinical Characteristics and Treatment of Patients Infected with COVID-19 in Shishou, China
  9. 9 Nature,11月10日,Mobility network models of COVID-19 explain inequities and inform reopening
  10. 10 1月27日_Nature报道中国新型冠状病毒最新研究进展:病毒传播速度有多快?
  1. 1 Phys.org,2月21日,Why natural killer cells react to COVID-19
  2. 2 ScienceDaily,2月18日,T-cell responses may help predict protection against SARS-CoV-2 infection in individuals with and without cancer
  3. 3 2月18日_研究发现伊维菌素对轻度至中度COVID-19无效
  4. 4 2月17日_抗磷脂自身抗体可使COVID-19患者出现血栓
  5. 5 2月21日_科学家合成SARS-CoV-2病毒颗粒并发现刺突蛋白的转换机制
  6. 6 2月16日_免疫细胞靶向的SARS-CoV-2蛋白会引发蝙蝠冠状病毒的反应
  7. 7 Sciencedaily,2月17日,Study strengthens case that vitamins cannot treat COVID-19
  8. 8 Medicalxpress,2月16日,Study suggests increased risk of mental health disorders after COVID-19 infection
  9. 9 2月17日_高水平雌激素和抗酸剂可降低COVID-19风险
  10. 10 2月17日_研究发现COVID-19疫苗可提供持久的保护以预防再感染

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190