您当前的位置: 首页 > 资源详情

MedicalXpress,8月3日,The enzyme that allows coronavirus to resist antiviral medications

编译者:YUTING发布时间:Aug 7, 2021点击量:458 来源栏目:最新研究

The coronavirus that causes COVID-19 has demonstrated a stubborn ability to resist most nucleoside antiviral treatments, but a new study led by an Iowa State University scientist could help to overcome the virus's defenses.

The study, published recently in the peer-reviewed journal Science, details the structure of a critical enzyme present in SARS-CoV-2, the coronavirus that causes COVID-19. This enzyme, known as the proofreading exoribonuclease (or ExoN), removes nucleoside antiviral medications from the virus's RNA, rendering most nucleoside analogs-based antiviral treatments ineffective. The new study presents the atomic structures of the ExoN enzyme, which could lead to the development of new methods for deactivating the enzyme and opening the door to better treatments for patients suffering from COVID-19.

"If we could find a way to inhibit this enzyme, maybe we can achieve better results to kill the virus with existing nucleoside antiviral treatments. Understanding this structure and the molecular details of how ExoN works can help guide further development of antivirals," said Yang Yang, lead author of the study and assistant professor in the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology at Iowa State University.

SARS-CoV-2 is an RNA virus, which means its genetic material is composed of ribonucleic acid. When the virus replicates, it must synthesize RNA. But the virus's genome is unusually large when compared to other RNA viruses, which creates a relatively high likelihood that errors arise during RNA synthesis. These errors take the form of mismatched nucleotides, and too many errors can prevent the virus from propagating.

But the ExoN enzyme acts as a proofreader, recognizing mismatches in the virus RNA and correcting errors that occur during RNA synthesis, Yang said. The enzyme is present only in coronaviruses and a few other closely related virus families, he said.

The same process that eliminates replication errors also eliminates antiviral agents delivered by the treatments commonly used to fight other RNA viruses, such as HIV, HCV and Ebola virus, which partially explains why SARS-CoV-2 has proven so difficult to treat, Yang said.

But Yang and his colleagues utilized cryogenic electron microscopy, a technique in which samples are flash cooled to cryogenic temperatures in vitreous ice to preserve their native structures, to detail the structure of the enzyme. Understanding that structure could allow for the development of molecules that bind to the enzyme and disable it. Yang said that's the next step for his laboratory and his colleagues. Finding such a molecule could make the virus more susceptible to newly developed antivirals, Yang said. Or, it could allow for the optimization of current antivirals, such as Remdesivir.

提供服务:导出本资源
  1. 1 Nature,11月10日,Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility
  2. 2 11月10日_研究人员分析宿主基因对COVID-19严重程度和易感性的影响
  3. 3 11月11日_新冠药物Remestemcel-L二期临床的中期分析结果积极
  4. 4 11月11日_CDC呼吁制定通用口罩规定以减少新冠传播
  5. 5 SSRN,2月20日,Dynamics of the Latest 2019 Novel Coronavirus Disease Epidemic in China: A Descriptive Study
  6. 6 SSRN,2月20日,Mental Health Problems and Social Media Exposure During COVID-19 Outbreak
  7. 7 SSRN,2月20日,Evaluating Incidence and Impact Estimates of the Coronavirus Outbreak from Official and Non-Official Chinese Data Sources
  8. 8 SSRN,2月20日,Clinical Characteristics and Treatment of Patients Infected with COVID-19 in Shishou, China
  9. 9 Nature,11月10日,Mobility network models of COVID-19 explain inequities and inform reopening
  10. 10 1月27日_Nature报道中国新型冠状病毒最新研究进展:病毒传播速度有多快?
  1. 1 10月11日_SARS-CoV-2变体对mRNA疫苗诱导的免疫反应的影响
  2. 2 10月11日_SARS-CoV-2变体对mRNA疫苗诱导的免疫反应的影响
  3. 3 Medicalxpress,10月11日,Vaccines prevent severe COVID, even from Delta: study
  4. 4 10月11日_疫苗接种可预防严重COVID-19
  5. 5 PR Newswire,10月11日,INOVIO Expands INNOVATE Phase 3 for INO-4800, its DNA Vaccine Candidate for COVID-19, to include Colombia following Regulatory Authorization
  6. 6 10月11日_INOVIO扩展其COVID-19疫苗INO-4800的3期研究
  7. 7 ACCESSWIRE,10月11日,NanoViricides Announces COVID-19 Clinical Drug Candidate NV-CoV-2 was Effective Against SARS-CoV-2, Further Demonstrating Its Broad-Spectrum Pan-Coronavirus Activity
  8. 8 10月11日_NV-CoV-2具有广谱的抗冠状病毒活性
  9. 9 CIDRAP,10月11日,Merck applies for approval of first COVID-19 antiviral pill
  10. 10 10月11日_默沙东向FDA申请首款COVID-19抗病毒药丸的EUA

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190