您当前的位置: 首页 > 资源详情

ACCESSWIRE,10月11日,NanoViricides Announces COVID-19 Clinical Drug Candidate NV-CoV-2 was Effective Against SARS-CoV-2, Further Demonstrating Its Broad-Spectrum Pan-Coronavirus Activity

编译者:YUTING发布时间:2021-10-15点击量:46 来源栏目:最新研究

SHELTON, CT / ACCESSWIRE / October 11, 2021 / NanoViricides, Inc. (NYSE American:NNVC) (the "Company"), a leader in the development of highly effective antiviral therapies based on a novel nanomedicines technology, announced today that its Pan-Coronavirus COVID-19 Drug Candidate NV-CoV-2 was found to be effective against SARS-CoV-2 in a standard cell culture pseudovirion assay, demonstrating that the drug indeed has broad-spectrum pan-coronavirus activity. This pan-coronavirus activity implies that the drug NV-CoV-2 should remain active in spite of evolution of variants of SARS-CoV-2 in the field, a highly sought-after characteristic to combat the current global pandemic.

In this assay, both the drug candidate NV-CoV-2 and a positive control antibody specific to the Spike antigen S1 of the SARS-CoV-2 virus suppressed the infection by the SARS-CoV-2-pseudovirions in cell culture studies to virtually the same baseline levels.

We have now demonstrated that NV-CoV-2 is highly effective in cell cultures against SARS-CoV-2, human coronavirus NL-63, and human coronavirus 229E, all very different human coronaviruses. These results imply that the drug will remain active in spite of novel variants of SARS-CoV-2 evolution in the field, and indeed demonstrate the pan-coronavirus activity of our clinical drug candidate NV-CoV-2.

Additionally, the pseudovirion study also showed that NV-CoV-2 neutralizes the virus particles themselves, outside of the cells, validating our design mechanism.

"We are now preparing submission documents to enable initiation of human clinical trials," commented Dr. Anil Diwan, Chairman and President of the Company, adding, "We believe that NV-CoV-2 may help end the pandemic if it is shown to be effective in human clinical trials."

A strong SARS-CoV-2 infection inhibition activity of NV-CoV-2 was observed in this pseudovirion study. Pseudovirion assay is a standard method for evaluating virus entry-inhibitors in BSL2 laboratories and is primarily used for viruses that would otherwise require high security BSL3 or BSL4 laboratories. In this study, SARS-CoV-2-pseudovirion virus particles were made that carry a green fluorescent protein (GFP) producer mRNA inside, and use the SARS-CoV-2 S1 protein on their surface to bind to ACE2 receptor protein on cells. They were incubated with NV-CoV-2 (test article), or a known neutralizing antibody (positive control), or just the vehicle buffer (negative control). Then these solutions were separately used to infect ACE2 positive cells and the cultures were incubated. Only the infected cells produced GFP and were visualized by green fluorescence in microscopy. In this well-known assay, NV-CoV-2 was as effective as the neutralizing antibody in reducing the virus infection. This study demonstrates that NV-CoV-2 attacks the SARS-CoV-2 pseudovirion particles and renders them incapable of binding to the ACE2 positive cells.

A "pseudovirion" is a virus particle made of a BSL-2 virus shell, but with its original cell-binding protein replaced by the cell binding protein of a BSL3 or BSL4 virus, in this case, the S1 antigen of SARS-CoV-2. Additionally, the pseudovirion particle contains an mRNA that is packaged like the original virus, except that the mRNA is edited and redesigned so that it cannot produce infectious virus particles. In our study, this mRNA allowed expression and production of the green fluorescent protein (GFP) enabling visual detection of the infected cells (green) in microscopy.

提供服务:导出本资源
  1. 1 Nature,11月10日,Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility
  2. 2 11月10日_研究人员分析宿主基因对COVID-19严重程度和易感性的影响
  3. 3 11月11日_新冠药物Remestemcel-L二期临床的中期分析结果积极
  4. 4 11月11日_CDC呼吁制定通用口罩规定以减少新冠传播
  5. 5 SSRN,2月20日,Dynamics of the Latest 2019 Novel Coronavirus Disease Epidemic in China: A Descriptive Study
  6. 6 SSRN,2月20日,Mental Health Problems and Social Media Exposure During COVID-19 Outbreak
  7. 7 SSRN,2月20日,Evaluating Incidence and Impact Estimates of the Coronavirus Outbreak from Official and Non-Official Chinese Data Sources
  8. 8 SSRN,2月20日,Clinical Characteristics and Treatment of Patients Infected with COVID-19 in Shishou, China
  9. 9 Nature,11月10日,Mobility network models of COVID-19 explain inequities and inform reopening
  10. 10 1月27日_Nature报道中国新型冠状病毒最新研究进展:病毒传播速度有多快?
  1. 1 Phys.org,2月21日,Why natural killer cells react to COVID-19
  2. 2 ScienceDaily,2月18日,T-cell responses may help predict protection against SARS-CoV-2 infection in individuals with and without cancer
  3. 3 2月18日_研究发现伊维菌素对轻度至中度COVID-19无效
  4. 4 2月17日_抗磷脂自身抗体可使COVID-19患者出现血栓
  5. 5 2月21日_科学家合成SARS-CoV-2病毒颗粒并发现刺突蛋白的转换机制
  6. 6 2月16日_免疫细胞靶向的SARS-CoV-2蛋白会引发蝙蝠冠状病毒的反应
  7. 7 Sciencedaily,2月17日,Study strengthens case that vitamins cannot treat COVID-19
  8. 8 Medicalxpress,2月16日,Study suggests increased risk of mental health disorders after COVID-19 infection
  9. 9 2月17日_高水平雌激素和抗酸剂可降低COVID-19风险
  10. 10 2月17日_研究发现COVID-19疫苗可提供持久的保护以预防再感染

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190