您当前的位置: 首页 > 网页快照
Bloch surface wave resonance in photonic crystal fibers: towards ultra-wide range refractive index sensors
References. View by:. Article Order. Year. Author. Publication. W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014). [Crossref] . A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012). [Crossref] . A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005). [Crossref] . E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008). [Crossref] [PubMed] . M. U. Khan and B. Corbett, “Bloch surface wave structures for high sensitivity detection and compact waveguiding,” Sci. Technol. Adv. Mater. 17, 398–409 (2016). [Crossref] [PubMed] . M. Menotti and M. Liscidini, “Optical resonators based on Bloch surface waves,” J. Opt. Soc. Am. B 32, 431–438 (2015). [Crossref] . Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22, 21403 (2014). [Crossref] [PubMed] . P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [Crossref] . P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978). [Crossref] . M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons,” Appl. Phys. Lett.  98, 121118 (2011). [Crossref] . E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010). [Crossref] [PubMed] . T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010). [Crossref] . M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011). [Crossref] . F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013). [Crossref] [PubMed] . S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016). [Crossref] . M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett.  91, 253125 (2007). [Crossref] . T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H.-P. Herzig, M.-P. Bernal, and T. Grosjean, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017). [Crossref] [PubMed] . M. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi, “Grating-coupling-based excitation of Bloch surface waves for lab-on-fiber optrodes,” Opt. Express 24, 27771–27784 (2016). [Crossref] [PubMed] . X.-J. Tan and X.-S. Zhu, “Optical fiber sensor based on Bloch surface wave in photonic crystals,” Opt. Express 24, 16016–16026 (2016). [Crossref] [PubMed] . P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [Crossref] [PubMed] . V. H. Aristizabal, F. J. Vélez, and P. Torres, “Analysis of photonic crystal fibers: Scalar solution and polarization correction,” Opt. Express 14, 11848–11854 (2006). [Crossref] [PubMed] . B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001). [Crossref] [PubMed] . P. Torres, E. Reyes-Vera, A. Díez, and M. V. Andrés, “Two-core transversally chirped microstructured optical fiber refractive index sensor,” Opt. Lett. 39, 1593–1596 (2014). [Crossref] [PubMed] . E. Reyes-Vera and P. Torres, “Influence of filler metal on birefringent optical properties of photonic crystal fiber with integrated electrodes,” J. Opt.  18, 85804 (2016). [Crossref] . E. Reyes-Vera, C. M. B. Cordeiro, and P. Torres, “Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal,” Appl. Opt. 56, 156–162 (2017). [Crossref] [PubMed] . D. J. J. Hu, H. P. Ho, and R. M. Day, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics 9, 257–314 (2017). [Crossref] . S. Torres-Peiró, A. Díez, J. L. Cruz, and M. V. Andrés, “Fundamental-mode cutoff in liquid-filled Y-shaped microstructured fibers with Ge-doped core,” Opt. Lett. 33, 2578–2580 (2008). [Crossref] [PubMed] . G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015). [Crossref] . N. D. Gómez-Cardona, E. Reyes-Vera, and P. Torres, “Multi-plasmon resonances in microstructured optical fibers: Extending the detection range of SPR sensors and a multi-analyte sensing technique,” IEEE Sens. J. 18, 7492–7498 (2018). [Crossref] . R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012). [Crossref] . B. E. A. Saleh and M. C. Teich, Fundamentals of photonics(Wiley, 2007). . V. Brückner, Elements of optical networking (Vieweg+Teubner Verlag, 2011). [Crossref] . A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.-Usp. 53, 243–256 (2010). [Crossref] . A. W. Snyder and J. D. Love, Optical waveguide theory(SpringerUS, 1983). . G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014). [Crossref] . G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett.  9, 383 (2014). [Crossref] [PubMed] . B.-H. Liu, Y.-X. Jiang, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21, 32349–32357 (2013). [Crossref] . Y.-X. Jiang, B.-H. Liu, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40, 744–747 (2015). [Crossref] [PubMed] . 2018 (1). N. D. Gómez-Cardona, E. Reyes-Vera, and P. Torres, “Multi-plasmon resonances in microstructured optical fibers: Extending the detection range of SPR sensors and a multi-analyte sensing technique,” IEEE Sens. J. 18, 7492–7498 (2018). [Crossref] 2017 (3). E. Reyes-Vera, C. M. B. Cordeiro, and P. Torres, “Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal,” Appl. Opt. 56, 156–162 (2017). [Crossref] [PubMed] D. J. J. Hu, H. P. Ho, and R. M. Day, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics 9, 257–314 (2017). [Crossref] T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H.-P. Herzig, M.-P. Bernal, and T. Grosjean, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017). [Crossref] [PubMed] 2016 (5). M. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi, “Grating-coupling-based excitation of Bloch surface waves for lab-on-fiber optrodes,” Opt. Express 24, 27771–27784 (2016). [Crossref] [PubMed] X.-J. Tan and X.-S. Zhu, “Optical fiber sensor based on Bloch surface wave in photonic crystals,” Opt. Express 24, 16016–16026 (2016). [Crossref] [PubMed] M. U. Khan and B. Corbett, “Bloch surface wave structures for high sensitivity detection and compact waveguiding,” Sci. Technol. Adv. Mater. 17, 398–409 (2016). [Crossref] [PubMed] E. Reyes-Vera and P. Torres, “Influence of filler metal on birefringent optical properties of photonic crystal fiber with integrated electrodes,” J. Opt.  18, 85804 (2016). [Crossref] S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016). [Crossref] 2015 (3). G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015). [Crossref] Y.-X. Jiang, B.-H. Liu, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40, 744–747 (2015). [Crossref] [PubMed] M. Menotti and M. Liscidini, “Optical resonators based on Bloch surface waves,” J. Opt. Soc. Am. B 32, 431–438 (2015). [Crossref] 2014 (5). Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22, 21403 (2014). [Crossref] [PubMed] W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014). [Crossref] G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014). [Crossref] G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett.  9, 383 (2014). [Crossref] [PubMed] P. Torres, E. Reyes-Vera, A. Díez, and M. V. Andrés, “Two-core transversally chirped microstructured optical fiber refractive index sensor,” Opt. Lett. 39, 1593–1596 (2014). [Crossref] [PubMed] 2013 (2). B.-H. Liu, Y.-X. Jiang, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21, 32349–32357 (2013). [Crossref] F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013). [Crossref] [PubMed] 2012 (2). A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012). [Crossref] R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012). [Crossref] 2011 (2). M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011). [Crossref] M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons,” Appl. Phys. Lett.  98, 121118 (2011). [Crossref] 2010 (3). E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010). [Crossref] [PubMed] T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010). [Crossref] A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.-Usp. 53, 243–256 (2010). [Crossref] 2008 (2). S. Torres-Peiró, A. Díez, J. L. Cruz, and M. V. Andrés, “Fundamental-mode cutoff in liquid-filled Y-shaped microstructured fibers with Ge-doped core,” Opt. Lett. 33, 2578–2580 (2008). [Crossref] [PubMed] E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008). [Crossref] [PubMed] 2007 (1). M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett.  91, 253125 (2007). [Crossref] 2006 (1). V. H. Aristizabal, F. J. Vélez, and P. Torres, “Analysis of photonic crystal fibers: Scalar solution and polarization correction,” Opt. Express 14, 11848–11854 (2006). [Crossref] [PubMed] 2005 (1). A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005). [Crossref] 2003 (1). P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [Crossref] [PubMed] 2001 (1). B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001). [Crossref] [PubMed] 1978 (1). P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978). [Crossref] 1977 (1). P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [Crossref] Alvaro, M.. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013). [Crossref] [PubMed] Andrés, M. V.. P. Torres, E. Reyes-Vera, A. Díez, and M. V. Andrés, “Two-core transversally chirped microstructured optical fiber refractive index sensor,” Opt. Lett. 39, 1593–1596 (2014). [Crossref] [PubMed] S. Torres-Peiró, A. Díez, J. L. Cruz, and M. V. Andrés, “Fundamental-mode cutoff in liquid-filled Y-shaped microstructured fibers with Ge-doped core,” Opt. Lett. 33, 2578–2580 (2008). [Crossref] [PubMed] Aristizabal, V. H.. V. H. Aristizabal, F. J. Vélez, and P. Torres, “Analysis of photonic crystal fibers: Scalar solution and polarization correction,” Opt. Express 14, 11848–11854 (2006). [Crossref] [PubMed] Badding, J. V.. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012). [Crossref] Bajoni, D.. M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons,” Appl. Phys. Lett.  98, 121118 (2011). [Crossref] Ballarini, M.. M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011). [Crossref] Bernal, M.-P.. T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H.-P. Herzig, M.-P. Bernal, and T. Grosjean, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017). [Crossref] [PubMed] Boyer, P.. T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H.-P. Herzig, M.-P. Bernal, and T. Grosjean, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017). [Crossref] [PubMed] Brückner, V.. V. Brückner, Elements of optical networking (Vieweg+Teubner Verlag, 2011). [Crossref] Brunazzo, D.. T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010). [Crossref] E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010). [Crossref] [PubMed] Bussolino, F.. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013). [Crossref] [PubMed] Castaldi, G.. M. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi, “Grating-coupling-based excitation of Bloch surface waves for lab-on-fiber optrodes,” Opt. Express 24, 27771–27784 (2016). [Crossref] [PubMed] Cho, A. Y.. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978). [Crossref] Corbett, B.. M. U. Khan and B. Corbett, “Bloch surface wave structures for high sensitivity detection and compact waveguiding,” Sci. Technol. Adv. Mater. 17, 398–409 (2016). [Crossref] [PubMed] Cordeiro, C. M. B.. E. Reyes-Vera, C. M. B. Cordeiro, and P. Torres, “Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal,” Appl. Opt. 56, 156–162 (2017). [Crossref] [PubMed] Cruz, J. L.. S. Torres-Peiró, A. Díez, J. L. Cruz, and M. V. Andrés, “Fundamental-mode cutoff in liquid-filled Y-shaped microstructured fibers with Ge-doped core,” Opt. Lett. 33, 2578–2580 (2008). [Crossref] [PubMed] Cusano, A.. M. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi, “Grating-coupling-based excitation of Bloch surface waves for lab-on-fiber optrodes,” Opt. Express 24, 27771–27784 (2016). [Crossref] [PubMed] Danz, N.. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013). [Crossref] [PubMed] A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012). [Crossref] Day, R. M.. D. J. J. Hu, H. P. Ho, and R. M. Day, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics 9, 257–314 (2017). [Crossref] Descrovi, E.. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013). [Crossref] [PubMed] A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012). [Crossref] M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011). [Crossref] E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010). [Crossref] [PubMed] T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010). [Crossref] E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008). [Crossref] [PubMed] Díez, A.. P. Torres, E. Reyes-Vera, A. Díez, and M. V. Andrés, “Two-core transversally chirped microstructured optical fiber refractive index sensor,” Opt. Lett. 39, 1593–1596 (2014). [Crossref] [PubMed] S. Torres-Peiró, A. Díez, J. L. Cruz, and M. V. Andrés, “Fundamental-mode cutoff in liquid-filled Y-shaped microstructured fibers with Ge-doped core,” Opt. Lett. 33, 2578–2580 (2008). [Crossref] [PubMed] Digregorio, G.. M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011). [Crossref] Dominici, L.. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012). [Crossref] E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010). [Crossref] [PubMed] T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010). [Crossref] E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008). [Crossref] [PubMed] Dorofeenko, A. V.. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.-Usp. 53, 243–256 (2010). [Crossref] Du, G.. Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22, 21403 (2014). [Crossref] [PubMed] Eggleton, B. J.. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001). [Crossref] [PubMed] Frascella, F.. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013). [Crossref] [PubMed] M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011). [Crossref] Galdi, V.. M. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi, “Grating-coupling-based excitation of Bloch surface waves for lab-on-fiber optrodes,” Opt. Express 24, 27771–27784 (2016). [Crossref] [PubMed] Gerace, D.. M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons,” Appl. Phys. Lett.  98, 121118 (2011). [Crossref] Giorgis, F.. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013). [Crossref] [PubMed] M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011). [Crossref] E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010). [Crossref] [PubMed] T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010). [Crossref] E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008). [Crossref] [PubMed] Gómez-Cardona, N. D.. N. D. Gómez-Cardona, E. Reyes-Vera, and P. Torres, “Multi-plasmon resonances in microstructured optical fibers: Extending the detection range of SPR sensors and a multi-analyte sensing technique,” IEEE Sens. J. 18, 7492–7498 (2018). [Crossref] Gopalan, V.. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012). [Crossref] Grosjean, T.. T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H.-P. Herzig, M.-P. Bernal, and T. Grosjean, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017). [Crossref] [PubMed] Hale, A.. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001). [Crossref] [PubMed] Han, S.. Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22, 21403 (2014). [Crossref] [PubMed] He, R.. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012). [Crossref] Healy, N.. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012). [Crossref] Herzig, H. P.. T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010). [Crossref] E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010). [Crossref] [PubMed] E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008). [Crossref] [PubMed] Herzig, H.-P.. T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H.-P. Herzig, M.-P. Bernal, and T. Grosjean, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017). [Crossref] [PubMed] Ho, H. P.. D. J. J. Hu, H. P. Ho, and R. M. Day, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics 9, 257–314 (2017). [Crossref] Hong, C.-S.. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [Crossref] Hu, D. J. J.. D. J. J. Hu, H. P. Ho, and R. M. Day, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics 9, 257–314 (2017). [Crossref] Jiang, Y.-X.. Y.-X. Jiang, B.-H. Liu, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40, 744–747 (2015). [Crossref] [PubMed] B.-H. Liu, Y.-X. Jiang, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21, 32349–32357 (2013). [Crossref] Jiao, Y.. G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014). [Crossref] Kavokin, A. V.. A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005). [Crossref] Kerbage, C.. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001). [Crossref] [PubMed] Khan, M. U.. M. U. Khan and B. Corbett, “Bloch surface wave structures for high sensitivity detection and compact waveguiding,” Sci. Technol. Adv. Mater. 17, 398–409 (2016). [Crossref] [PubMed] Kim, M.-S.. T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H.-P. Herzig, M.-P. Bernal, and T. Grosjean, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017). [Crossref] [PubMed] Kong, W.. S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016). [Crossref] W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014). [Crossref] Kovalevich, T.. T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H.-P. Herzig, M.-P. Bernal, and T. Grosjean, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017). [Crossref] [PubMed] Krishnamurthi, M.. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012). [Crossref] Li, S.. S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016). [Crossref] W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014). [Crossref] Li, Y.. Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22, 21403 (2014). [Crossref] [PubMed] Liang, H.. G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015). [Crossref] Liao, C.. G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015). [Crossref] Liscidini, M.. M. Menotti and M. Liscidini, “Optical resonators based on Bloch surface waves,” J. Opt. Soc. Am. B 32, 431–438 (2015). [Crossref] M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons,” Appl. Phys. Lett.  98, 121118 (2011). [Crossref] M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett.  91, 253125 (2007). [Crossref] Lisyansky, A. A.. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.-Usp. 53, 243–256 (2010). [Crossref] Liu, B.-H.. Y.-X. Jiang, B.-H. Liu, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40, 744–747 (2015). [Crossref] [PubMed] B.-H. Liu, Y.-X. Jiang, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21, 32349–32357 (2013). [Crossref] Liu, J.. S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016). [Crossref] W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014). [Crossref] Liu, S.. G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015). [Crossref] Lonai, J. D.. G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett.  9, 383 (2014). [Crossref] [PubMed] Love, J. D.. A. W. Snyder and J. D. Love, Optical waveguide theory(SpringerUS, 1983). Malpuech, G.. A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005). [Crossref] Martin, O. J. F.. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010). [Crossref] [PubMed] T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010). [Crossref] Menotti, M.. M. Menotti and M. Liscidini, “Optical resonators based on Bloch surface waves,” J. Opt. Soc. Am. B 32, 431–438 (2015). [Crossref] Mernaugh, R. L.. G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett.  9, 383 (2014). [Crossref] [PubMed] Merzlikin, A. M.. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.-Usp. 53, 243–256 (2010). [Crossref] Michelotti, F.. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013). [Crossref] [PubMed] A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012). [Crossref] M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011). [Crossref] E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010). [Crossref] [PubMed] T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010). [Crossref] E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008). [Crossref] [PubMed] Moi, V.. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013). [Crossref] [PubMed] Munzert, P.. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013). [Crossref] [PubMed] A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012). [Crossref] Musi, V.. M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011). [Crossref] Nakagawa, W.. T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010). [Crossref] E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008). [Crossref] [PubMed] Napione, L.. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013). [Crossref] [PubMed] Paeder, V.. M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011). [Crossref] Pang, Z.. Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22, 21403 (2014). [Crossref] [PubMed] Peacock, A. C.. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012). [Crossref] Quaglio, M.. T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010). [Crossref] E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010). [Crossref] [PubMed] Reyes-Vera, E.. N. D. Gómez-Cardona, E. Reyes-Vera, and P. Torres, “Multi-plasmon resonances in microstructured optical fibers: Extending the detection range of SPR sensors and a multi-analyte sensing technique,” IEEE Sens. J. 18, 7492–7498 (2018). [Crossref] E. Reyes-Vera, C. M. B. Cordeiro, and P. Torres, “Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal,” Appl. Opt. 56, 156–162 (2017). [Crossref] [PubMed] E. Reyes-Vera and P. Torres, “Influence of filler metal on birefringent optical properties of photonic crystal fiber with integrated electrodes,” J. Opt.  18, 85804 (2016). [Crossref] P. Torres, E. Reyes-Vera, A. Díez, and M. V. Andrés, “Two-core transversally chirped microstructured optical fiber refractive index sensor,” Opt. Lett. 39, 1593–1596 (2014). [Crossref] [PubMed] Ricciardi, S.. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013). [Crossref] [PubMed] Rivolo, P.. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013). [Crossref] [PubMed] M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011). [Crossref] Rodriguez, G. A.. G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014). [Crossref] G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett.  9, 383 (2014). [Crossref] [PubMed] Russell, P.. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [Crossref] [PubMed] Ryckman, J. D.. G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014). [Crossref] Saleh, B. E. A.. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics(Wiley, 2007). Salut, R.. T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H.-P. Herzig, M.-P. Bernal, and T. Grosjean, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017). [Crossref] [PubMed] Sanvitto, D.. M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons,” Appl. Phys. Lett.  98, 121118 (2011). [Crossref] Sazio, P. J. A.. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012). [Crossref] Scaravilli, M.. M. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi, “Grating-coupling-based excitation of Bloch surface waves for lab-on-fiber optrodes,” Opt. Express 24, 27771–27784 (2016). [Crossref] [PubMed] Schulz, U.. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012). [Crossref] Sfez, T.. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010). [Crossref] [PubMed] T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010). [Crossref] E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008). [Crossref] [PubMed] Shelykh, I. A.. A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005). [Crossref] Shi, Y.-W.. Y.-X. Jiang, B.-H. Liu, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40, 744–747 (2015). [Crossref] [PubMed] B.-H. Liu, Y.-X. Jiang, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21, 32349–32357 (2013). [Crossref] Sinibaldi, A.. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012). [Crossref] Sipe, J. E.. M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett.  91, 253125 (2007). [Crossref] Snyder, A. W.. A. W. Snyder and J. D. Love, Optical waveguide theory(SpringerUS, 1983). Song, S.. Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22, 21403 (2014). [Crossref] [PubMed] Sonntag, F.. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012). [Crossref] Sparks, J. R.. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012). [Crossref] Suarez, M.. T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H.-P. Herzig, M.-P. Bernal, and T. Grosjean, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017). [Crossref] [PubMed] Sun, Y.. S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016). [Crossref] Tan, X.-J.. X.-J. Tan and X.-S. Zhu, “Optical fiber sensor based on Bloch surface wave in photonic crystals,” Opt. Express 24, 16016–16026 (2016). [Crossref] [PubMed] Tang, X.-L.. Y.-X. Jiang, B.-H. Liu, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40, 744–747 (2015). [Crossref] [PubMed] B.-H. Liu, Y.-X. Jiang, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21, 32349–32357 (2013). [Crossref] Teich, M. C.. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics(Wiley, 2007). Torres, P.. N. D. Gómez-Cardona, E. Reyes-Vera, and P. Torres, “Multi-plasmon resonances in microstructured optical fibers: Extending the detection range of SPR sensors and a multi-analyte sensing technique,” IEEE Sens. J. 18, 7492–7498 (2018). [Crossref] E. Reyes-Vera, C. M. B. Cordeiro, and P. Torres, “Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal,” Appl. Opt. 56, 156–162 (2017). [Crossref] [PubMed] E. Reyes-Vera and P. Torres, “Influence of filler metal on birefringent optical properties of photonic crystal fiber with integrated electrodes,” J. Opt.  18, 85804 (2016). [Crossref] P. Torres, E. Reyes-Vera, A. Díez, and M. V. Andrés, “Two-core transversally chirped microstructured optical fiber refractive index sensor,” Opt. Lett. 39, 1593–1596 (2014). [Crossref] [PubMed] V. H. Aristizabal, F. J. Vélez, and P. Torres, “Analysis of photonic crystal fibers: Scalar solution and polarization correction,” Opt. Express 14, 11848–11854 (2006). [Crossref] [PubMed] Torres-Peiró, S.. S. Torres-Peiró, A. Díez, J. L. Cruz, and M. V. Andrés, “Fundamental-mode cutoff in liquid-filled Y-shaped microstructured fibers with Ge-doped core,” Opt. Lett. 33, 2578–2580 (2008). [Crossref] [PubMed] Vélez, F. J.. V. H. Aristizabal, F. J. Vélez, and P. Torres, “Analysis of photonic crystal fibers: Scalar solution and polarization correction,” Opt. Express 14, 11848–11854 (2006). [Crossref] [PubMed] Vinogradov, A. P.. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.-Usp. 53, 243–256 (2010). [Crossref] Wan, Y.. S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016). [Crossref] W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014). [Crossref] Wang, C.. G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015). [Crossref] Wang, G.. G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015). [Crossref] Wang, Y.. G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015). [Crossref] Weiss, S. M.. G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014). [Crossref] G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett.  9, 383 (2014). [Crossref] [PubMed] Westbrook, P. S.. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001). [Crossref] [PubMed] Windeler, R. S.. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001). [Crossref] [PubMed] Xu, X.. G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015). [Crossref] Yang, T.. Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22, 21403 (2014). [Crossref] [PubMed] Yariv, A.. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978). [Crossref] P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [Crossref] Yeh, P.. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978). [Crossref] P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [Crossref] Yin, G.. G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015). [Crossref] Yu, L.. T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010). [Crossref] Zhao, J.. G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015). [Crossref] Zheng, Z.. S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016). [Crossref] W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014). [Crossref] Zhu, X.-S.. X.-J. Tan and X.-S. Zhu, “Optical fiber sensor based on Bloch surface wave in photonic crystals,” Opt. Express 24, 16016–16026 (2016). [Crossref] [PubMed] Y.-X. Jiang, B.-H. Liu, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40, 744–747 (2015). [Crossref] [PubMed] B.-H. Liu, Y.-X. Jiang, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21, 32349–32357 (2013). [Crossref] Adv. Opt. Photonics (1). D. J. J. Hu, H. P. Ho, and R. M. Day, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics 9, 257–314 (2017). [Crossref] Appl. Opt. (1). E. Reyes-Vera, C. M. B. Cordeiro, and P. Torres, “Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal,” Appl. Opt. 56, 156–162 (2017). [Crossref] [PubMed] Appl. Phys. Lett (3). M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons,” Appl. Phys. Lett.  98, 121118 (2011). [Crossref] M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011). [Crossref] M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett.  91, 253125 (2007). [Crossref] Appl. Phys. Lett. (1). P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978). [Crossref] Biosens. Bioelectron. (1). G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014). [Crossref] IEEE Sens. J. (3). S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016). [Crossref] G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015). [Crossref] N. D. Gómez-Cardona, E. Reyes-Vera, and P. Torres, “Multi-plasmon resonances in microstructured optical fibers: Extending the detection range of SPR sensors and a multi-analyte sensing technique,” IEEE Sens. J. 18, 7492–7498 (2018). [Crossref] J. Opt (1). E. Reyes-Vera and P. Torres, “Influence of filler metal on birefringent optical properties of photonic crystal fiber with integrated electrodes,” J. Opt.  18, 85804 (2016). [Crossref] J. Opt. Soc. Am. (1). P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [Crossref] J. Opt. Soc. Am. B (2). T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010). [Crossref] M. Menotti and M. Liscidini, “Optical resonators based on Bloch surface waves,” J. Opt. Soc. Am. B 32, 431–438 (2015). [Crossref] Nano Lett. (1). E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010). [Crossref] [PubMed] Nanoscale Res. Lett (1). G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett.  9, 383 (2014). [Crossref] [PubMed] Nat. Photonics (1). R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012). [Crossref] Opt. Express (8). B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001). [Crossref] [PubMed] V. H. Aristizabal, F. J. Vélez, and P. Torres, “Analysis of photonic crystal fibers: Scalar solution and polarization correction,” Opt. Express 14, 11848–11854 (2006). [Crossref] [PubMed] E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008). [Crossref] [PubMed] X.-J. Tan and X.-S. Zhu, “Optical fiber sensor based on Bloch surface wave in photonic crystals,” Opt. Express 24, 16016–16026 (2016). [Crossref] [PubMed] M. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi, “Grating-coupling-based excitation of Bloch surface waves for lab-on-fiber optrodes,” Opt. Express 24, 27771–27784 (2016). [Crossref] [PubMed] B.-H. Liu, Y.-X. Jiang, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21, 32349–32357 (2013). [Crossref] Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22, 21403 (2014). [Crossref] [PubMed] T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H.-P. Herzig, M.-P. Bernal, and T. Grosjean, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017). [Crossref] [PubMed] Opt. Lett. (3). P. Torres, E. Reyes-Vera, A. Díez, and M. V. Andrés, “Two-core transversally chirped microstructured optical fiber refractive index sensor,” Opt. Lett. 39, 1593–1596 (2014). [Crossref] [PubMed] Y.-X. Jiang, B.-H. Liu, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40, 744–747 (2015). [Crossref] [PubMed] S. Torres-Peiró, A. Díez, J. L. Cruz, and M. V. Andrés, “Fundamental-mode cutoff in liquid-filled Y-shaped microstructured fibers with Ge-doped core,” Opt. Lett. 33, 2578–2580 (2008). [Crossref] [PubMed] Phys. Rev. B (1). A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005). [Crossref] Phys.-Usp. (1). A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.-Usp. 53, 243–256 (2010). [Crossref] Sci. Technol. Adv. Mater. (1). M. U. Khan and B. Corbett, “Bloch surface wave structures for high sensitivity detection and compact waveguiding,” Sci. Technol. Adv. Mater. 17, 398–409 (2016). [Crossref] [PubMed] Science (1). P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [Crossref] [PubMed] Sens. Actuators, B (2). W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014). [Crossref] A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012). [Crossref] Sensors (1). F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013). [Crossref] [PubMed] Other (3). B. E. A. Saleh and M. C. Teich, Fundamentals of photonics(Wiley, 2007). V. Brückner, Elements of optical networking (Vieweg+Teubner Verlag, 2011). [Crossref] A. W. Snyder and J. D. Love, Optical waveguide theory(SpringerUS, 1983). .
From: