您当前的位置: 首页 > 网页快照
Stokes shift microscopy by excitation and emission imaging
References. View by:. Article Order. Year. Author. Publication. J. R. Lakowicz, Principles of fluorescence spectroscopy (Springer, 2006). . B. Valeur and M. N. Berberan-Santos, Molecular fluorescence: principles and applications (John Wiley & Sons, 2012). . R. Arppe-Tabbara, M. R. Carro-Temboury, C. Hempel, T. Vosch, and T. J. Sørensen, “Luminescence from lanthanide (III) ions bound to the glycocalyx of Chinese hamster ovary cells,” Chemistry 24(46), 11885–11889 (2018). [Crossref] [PubMed] . Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015). [Crossref] [PubMed] . Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006). [Crossref] [PubMed] . Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996). [Crossref] . T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003). [Crossref] [PubMed] . R. Yan, S. Moon, S. J. Kenny, and K. Xu, “Spectrally resolved and functional super-resolution microscopy via ultrahigh-throughput single-molecule spectroscopy,” Acc. Chem. Res. 51(3), 697–705 (2018). [Crossref] [PubMed] . L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010). [Crossref] [PubMed] . R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001). [Crossref] [PubMed] . H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000). [Crossref] [PubMed] . S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017). [Crossref] [PubMed] . E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996). [Crossref] [PubMed] . M. R. Speicher, S. G. Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12(4), 368–375 (1996). [Crossref] [PubMed] . W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999). [Crossref] [PubMed] . I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017). [Crossref] [PubMed] . G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014). [Crossref] [PubMed] . Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013). [Crossref] [PubMed] . J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012). [Crossref] . G. A. Roth, S. Tahiliani, N. M. Neu-Baker, and S. A. Brenner, “Hyperspectral microscopy as an analytical tool for nanomaterials,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(4), 565–579 (2015). [Crossref] [PubMed] . D. Lepage, A. Jimenez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012). [Crossref] . M. Streiter, S. Krause, C. von Borczyskowski, and C. Deibel, “Dynamics of single-molecule stokes shifts: Influence of conformation and environment,” J. Phys. Chem. Lett. 7(21), 4281–4284 (2016). [Crossref] [PubMed] . Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017). [Crossref] [PubMed] . D. Melnikau, S. Elcoroaristizabal, and A. G. Ryder, “An excitation emission fluorescence lifetime spectrometer using a frequency doubled supercontinuum laser source,” Methods Appl. Fluoresc. 6(4), 045007 (2018). [Crossref] [PubMed] . L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7(1), 10411 (2016). [Crossref] [PubMed] . P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014). [Crossref] [PubMed] . A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017). [Crossref] [PubMed] . A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018). [Crossref] [PubMed] . E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted). . Y. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72(19), 4640–4645 (2000). [Crossref] [PubMed] . S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018). [Crossref] . D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012). [Crossref] [PubMed] . F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017). [Crossref] . J. W. Brault, “High precision Fourier transform spectrometry: The critical role of phase corrections,” Mikrochim. Acta 93(1-6), 215–227 (1987). [Crossref] . N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011). [Crossref] . P. Greenspan and S. D. Fowler, “Spectrofluorometric studies of the lipid probe, Nile red,” J. Lipid Res. 26(7), 781–789 (1985). [PubMed] . A. Kawski, P. Bojarski, and B. Kukliński, “Estimation of ground- and excited-state dipole moments of Nile red dye from solvatochromic effect on absorption and fluorescence spectra,” Chem. Phys. Lett. 463(4-6), 410–412 (2008). [Crossref] . A. K. Dutta, K. Kamada, and K. Ohta, “Spectroscopic studies of Nile red in organic solvents and polymers,” J. Photoch. Photobio. A 93(1), 57–64 (1996). [Crossref] . H. Strahl, F. Bürmann, and L. W. Hamoen, “The actin homologue MreB organizes the bacterial cell membrane,” Nat. Commun. 5(1), 3442 (2014). [Crossref] [PubMed] . A.-Y. Jee, S. Park, H. Kwon, and M. Lee, “Excited state dynamics of Nile red in polymers,” Chem. Phys. Lett. 477(1-3), 112–115 (2009). [Crossref] . S. Krause, M. H. Overgaard, and T. Vosch, “Photon energy dependent micro-Raman spectroscopy with a continuum laser source,” Sci. Rep. 8(1), 11621 (2018). [Crossref] [PubMed] . Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013). [Crossref] [PubMed] . 2018 (6). R. Arppe-Tabbara, M. R. Carro-Temboury, C. Hempel, T. Vosch, and T. J. Sørensen, “Luminescence from lanthanide (III) ions bound to the glycocalyx of Chinese hamster ovary cells,” Chemistry 24(46), 11885–11889 (2018). [Crossref] [PubMed] R. Yan, S. Moon, S. J. Kenny, and K. Xu, “Spectrally resolved and functional super-resolution microscopy via ultrahigh-throughput single-molecule spectroscopy,” Acc. Chem. Res. 51(3), 697–705 (2018). [Crossref] [PubMed] D. Melnikau, S. Elcoroaristizabal, and A. G. Ryder, “An excitation emission fluorescence lifetime spectrometer using a frequency doubled supercontinuum laser source,” Methods Appl. Fluoresc. 6(4), 045007 (2018). [Crossref] [PubMed] A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018). [Crossref] [PubMed] S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018). [Crossref] S. Krause, M. H. Overgaard, and T. Vosch, “Photon energy dependent micro-Raman spectroscopy with a continuum laser source,” Sci. Rep. 8(1), 11621 (2018). [Crossref] [PubMed] 2017 (5). A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017). [Crossref] [PubMed] F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017). [Crossref] Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017). [Crossref] [PubMed] S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017). [Crossref] [PubMed] I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017). [Crossref] [PubMed] 2016 (2). M. Streiter, S. Krause, C. von Borczyskowski, and C. Deibel, “Dynamics of single-molecule stokes shifts: Influence of conformation and environment,” J. Phys. Chem. Lett. 7(21), 4281–4284 (2016). [Crossref] [PubMed] L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7(1), 10411 (2016). [Crossref] [PubMed] 2015 (2). G. A. Roth, S. Tahiliani, N. M. Neu-Baker, and S. A. Brenner, “Hyperspectral microscopy as an analytical tool for nanomaterials,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(4), 565–579 (2015). [Crossref] [PubMed] Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015). [Crossref] [PubMed] 2014 (3). G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014). [Crossref] [PubMed] P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014). [Crossref] [PubMed] H. Strahl, F. Bürmann, and L. W. Hamoen, “The actin homologue MreB organizes the bacterial cell membrane,” Nat. Commun. 5(1), 3442 (2014). [Crossref] [PubMed] 2013 (2). Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013). [Crossref] [PubMed] Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013). [Crossref] [PubMed] 2012 (3). J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012). [Crossref] D. Lepage, A. Jimenez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012). [Crossref] D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012). [Crossref] [PubMed] 2011 (1). N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011). [Crossref] 2010 (1). L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010). [Crossref] [PubMed] 2009 (1). A.-Y. Jee, S. Park, H. Kwon, and M. Lee, “Excited state dynamics of Nile red in polymers,” Chem. Phys. Lett. 477(1-3), 112–115 (2009). [Crossref] 2008 (1). A. Kawski, P. Bojarski, and B. Kukliński, “Estimation of ground- and excited-state dipole moments of Nile red dye from solvatochromic effect on absorption and fluorescence spectra,” Chem. Phys. Lett. 463(4-6), 410–412 (2008). [Crossref] 2006 (1). Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006). [Crossref] [PubMed] 2003 (1). T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003). [Crossref] [PubMed] 2001 (1). R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001). [Crossref] [PubMed] 2000 (2). H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000). [Crossref] [PubMed] Y. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72(19), 4640–4645 (2000). [Crossref] [PubMed] 1999 (1). W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999). [Crossref] [PubMed] 1996 (4). E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996). [Crossref] [PubMed] M. R. Speicher, S. G. Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12(4), 368–375 (1996). [Crossref] [PubMed] Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996). [Crossref] A. K. Dutta, K. Kamada, and K. Ohta, “Spectroscopic studies of Nile red in organic solvents and polymers,” J. Photoch. Photobio. A 93(1), 57–64 (1996). [Crossref] 1987 (1). J. W. Brault, “High precision Fourier transform spectrometry: The critical role of phase corrections,” Mikrochim. Acta 93(1-6), 215–227 (1987). [Crossref] 1985 (1). P. Greenspan and S. D. Fowler, “Spectrofluorometric studies of the lipid probe, Nile red,” J. Lipid Res. 26(7), 781–789 (1985). [PubMed] Alvarez, D. F.. P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014). [Crossref] [PubMed] Amenabar, I.. I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017). [Crossref] [PubMed] Arppe-Tabbara, R.. R. Arppe-Tabbara, M. R. Carro-Temboury, C. Hempel, T. Vosch, and T. J. Sørensen, “Luminescence from lanthanide (III) ions bound to the glycocalyx of Chinese hamster ovary cells,” Chemistry 24(46), 11885–11889 (2018). [Crossref] [PubMed] Ballard, S. G.. M. R. Speicher, S. G. Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12(4), 368–375 (1996). [Crossref] [PubMed] Ballottari, M.. A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018). [Crossref] [PubMed] Bar-Am, I.. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996). [Crossref] [PubMed] Beauvais, J.. D. Lepage, A. Jimenez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012). [Crossref] Bojarski, P.. A. Kawski, P. Bojarski, and B. Kukliński, “Estimation of ground- and excited-state dipole moments of Nile red dye from solvatochromic effect on absorption and fluorescence spectra,” Chem. Phys. Lett. 463(4-6), 410–412 (2008). [Crossref] Bouma, G. J.. W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999). [Crossref] [PubMed] Brault, J. W.. J. W. Brault, “High precision Fourier transform spectrometry: The critical role of phase corrections,” Mikrochim. Acta 93(1-6), 215–227 (1987). [Crossref] Brenner, S. A.. G. A. Roth, S. Tahiliani, N. M. Neu-Baker, and S. A. Brenner, “Hyperspectral microscopy as an analytical tool for nanomaterials,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(4), 565–579 (2015). [Crossref] [PubMed] Brida, D.. D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012). [Crossref] [PubMed] Buckwald, R. A.. Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996). [Crossref] Bürmann, F.. H. Strahl, F. Bürmann, and L. W. Hamoen, “The actin homologue MreB organizes the bacterial cell membrane,” Nat. Commun. 5(1), 3442 (2014). [Crossref] [PubMed] Cabib, D.. Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996). [Crossref] Cai, Y.-Y.. S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018). [Crossref] Carro-Temboury, M. R.. R. Arppe-Tabbara, M. R. Carro-Temboury, C. Hempel, T. Vosch, and T. J. Sørensen, “Luminescence from lanthanide (III) ions bound to the glycocalyx of Chinese hamster ovary cells,” Chemistry 24(46), 11885–11889 (2018). [Crossref] [PubMed] Cassan, E.. J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012). [Crossref] Cerullo, G.. A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018). [Crossref] [PubMed] F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017). [Crossref] A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017). [Crossref] [PubMed] D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012). [Crossref] [PubMed] E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted). Chang, W.-S.. S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018). [Crossref] Chen, L.. Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013). [Crossref] [PubMed] Cluzel, B.. J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012). [Crossref] Collins, S. S. E.. S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018). [Crossref] D’Andrea, C.. A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018). [Crossref] [PubMed] A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017). [Crossref] [PubMed] De Fornel, F.. J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012). [Crossref] de Oliveira, N.. N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011). [Crossref] De Silvestri, S.. A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018). [Crossref] [PubMed] Deibel, C.. M. Streiter, S. Krause, C. von Borczyskowski, and C. Deibel, “Dynamics of single-molecule stokes shifts: Influence of conformation and environment,” J. Phys. Chem. Lett. 7(21), 4281–4284 (2016). [Crossref] [PubMed] Dellinger, J.. J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012). [Crossref] du Manoir, S.. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996). [Crossref] [PubMed] Dubowski, J. J.. D. Lepage, A. Jimenez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012). [Crossref] Dutta, A. K.. A. K. Dutta, K. Kamada, and K. Ohta, “Spectroscopic studies of Nile red in organic solvents and polymers,” J. Photoch. Photobio. A 93(1), 57–64 (1996). [Crossref] Elcoroaristizabal, S.. D. Melnikau, S. Elcoroaristizabal, and A. G. Ryder, “An excitation emission fluorescence lifetime spectrometer using a frequency doubled supercontinuum laser source,” Methods Appl. Fluoresc. 6(4), 045007 (2018). [Crossref] [PubMed] Farina, A.. A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018). [Crossref] [PubMed] Faulkner, S.. Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015). [Crossref] [PubMed] Favreau, P. F.. P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014). [Crossref] [PubMed] Fei, B.. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014). [Crossref] [PubMed] Ferguson-Smith, M. A.. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996). [Crossref] [PubMed] Ferrari, A. C.. F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017). [Crossref] Fowler, S. D.. P. Greenspan and S. D. Fowler, “Spectrofluorometric studies of the lipid probe, Nile red,” J. Lipid Res. 26(7), 781–789 (1985). [PubMed] Gaida, J. H.. A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018). [Crossref] [PubMed] Gao, L.. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010). [Crossref] [PubMed] Garini, Y.. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006). [Crossref] [PubMed] Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996). [Crossref] E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996). [Crossref] [PubMed] Garner, H. R.. R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001). [Crossref] [PubMed] Gellings, E.. L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7(1), 10411 (2016). [Crossref] [PubMed] Goikoetxea, M.. I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017). [Crossref] [PubMed] Greenspan, P.. P. Greenspan and S. D. Fowler, “Spectrofluorometric studies of the lipid probe, Nile red,” J. Lipid Res. 26(7), 781–789 (1985). [PubMed] Groner, W.. W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999). [Crossref] [PubMed] Guo, F.. Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013). [Crossref] [PubMed] Hagen, N.. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010). [Crossref] [PubMed] Hamoen, L. W.. H. Strahl, F. Bürmann, and L. W. Hamoen, “The actin homologue MreB organizes the bacterial cell membrane,” Nat. Commun. 5(1), 3442 (2014). [Crossref] [PubMed] Harris, A. G.. W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999). [Crossref] [PubMed] Hattori, S.. H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000). [Crossref] [PubMed] Hauer, J.. A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018). [Crossref] [PubMed] A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017). [Crossref] [PubMed] E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted). He, X.. Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013). [Crossref] [PubMed] Heaster, T.. P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014). [Crossref] [PubMed] Hempel, C.. R. Arppe-Tabbara, M. R. Carro-Temboury, C. Hempel, T. Vosch, and T. J. Sørensen, “Luminescence from lanthanide (III) ions bound to the glycocalyx of Chinese hamster ovary cells,” Chemistry 24(46), 11885–11889 (2018). [Crossref] [PubMed] Hernandez, C.. P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014). [Crossref] [PubMed] Hillenbrand, R.. I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017). [Crossref] [PubMed] Hirose, S.. H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000). [Crossref] [PubMed] Hoener, B. S.. S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018). [Crossref] Hooley, E. N.. Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013). [Crossref] [PubMed] Ince, C.. W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999). [Crossref] [PubMed] Intes, X.. Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017). [Crossref] [PubMed] Jee, A.-Y.. A.-Y. Jee, S. Park, H. Kwon, and M. Lee, “Excited state dynamics of Nile red in polymers,” Chem. Phys. Lett. 477(1-3), 112–115 (2009). [Crossref] Jimenez, A.. D. Lepage, A. Jimenez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012). [Crossref] Joyeux, D.. N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011). [Crossref] Just Sørensen, T.. Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015). [Crossref] [PubMed] Kamada, K.. A. K. Dutta, K. Kamada, and K. Ohta, “Spectroscopic studies of Nile red in organic solvents and polymers,” J. Photoch. Photobio. A 93(1), 57–64 (1996). [Crossref] Kawski, A.. A. Kawski, P. Bojarski, and B. Kukliński, “Estimation of ground- and excited-state dipole moments of Nile red dye from solvatochromic effect on absorption and fluorescence spectra,” Chem. Phys. Lett. 463(4-6), 410–412 (2008). [Crossref] Kenny, S. J.. R. Yan, S. Moon, S. J. Kenny, and K. Xu, “Spectrally resolved and functional super-resolution microscopy via ultrahigh-throughput single-molecule spectroscopy,” Acc. Chem. Res. 51(3), 697–705 (2018). [Crossref] [PubMed] S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017). [Crossref] [PubMed] Kester, R. T.. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010). [Crossref] [PubMed] Kinnear, C.. S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018). [Crossref] Kirchner, S. R.. S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018). [Crossref] Krause, S.. S. Krause, M. H. Overgaard, and T. Vosch, “Photon energy dependent micro-Raman spectroscopy with a continuum laser source,” Sci. Rep. 8(1), 11621 (2018). [Crossref] [PubMed] M. Streiter, S. Krause, C. von Borczyskowski, and C. Deibel, “Dynamics of single-molecule stokes shifts: Influence of conformation and environment,” J. Phys. Chem. Lett. 7(21), 4281–4284 (2016). [Crossref] [PubMed] E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted). Kuklinski, B.. A. Kawski, P. Bojarski, and B. Kukliński, “Estimation of ground- and excited-state dipole moments of Nile red dye from solvatochromic effect on absorption and fluorescence spectra,” Chem. Phys. Lett. 463(4-6), 410–412 (2008). [Crossref] Kwon, H.. A.-Y. Jee, S. Park, H. Kwon, and M. Lee, “Excited state dynamics of Nile red in polymers,” Chem. Phys. Lett. 477(1-3), 112–115 (2009). [Crossref] Landes, C. F.. S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018). [Crossref] Lasch, P.. I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017). [Crossref] [PubMed] Le Roux, X.. J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012). [Crossref] Leavesley, S. J.. P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014). [Crossref] [PubMed] Ledbetter, D. H.. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996). [Crossref] [PubMed] Lee, M.. A.-Y. Jee, S. Park, H. Kwon, and M. Lee, “Excited state dynamics of Nile red in polymers,” Chem. Phys. Lett. 477(1-3), 112–115 (2009). [Crossref] Lepage, D.. D. Lepage, A. Jimenez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012). [Crossref] Li, Q.. Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013). [Crossref] [PubMed] Li, W.. S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017). [Crossref] [PubMed] Liao, Z.. Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015). [Crossref] [PubMed] Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013). [Crossref] [PubMed] Link, S.. S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018). [Crossref] Lipson, S. G.. Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996). [Crossref] Liu, H.. Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013). [Crossref] [PubMed] Lombardi, L.. F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017). [Crossref] Lu, G.. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014). [Crossref] [PubMed] Ma, Y.. Y. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72(19), 4640–4645 (2000). [Crossref] [PubMed] Malik, Z.. Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996). [Crossref] Mantulnikovs, K.. Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015). [Crossref] [PubMed] Manzoni, C.. D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012). [Crossref] [PubMed] McNamara, G.. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006). [Crossref] [PubMed] Melnikau, D.. D. Melnikau, S. Elcoroaristizabal, and A. G. Ryder, “An excitation emission fluorescence lifetime spectrometer using a frequency doubled supercontinuum laser source,” Methods Appl. Fluoresc. 6(4), 045007 (2018). [Crossref] [PubMed] Messmer, K.. W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999). [Crossref] [PubMed] Moon, S.. R. Yan, S. Moon, S. J. Kenny, and K. Xu, “Spectrally resolved and functional super-resolution microscopy via ultrahigh-throughput single-molecule spectroscopy,” Acc. Chem. Res. 51(3), 697–705 (2018). [Crossref] [PubMed] S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017). [Crossref] [PubMed] Müllen, K.. Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013). [Crossref] [PubMed] Mulvaney, P.. S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018). [Crossref] Nadeau, R. G.. W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999). [Crossref] [PubMed] Nahon, L.. N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011). [Crossref] Neu-Baker, N. M.. G. A. Roth, S. Tahiliani, N. M. Neu-Baker, and S. A. Brenner, “Hyperspectral microscopy as an analytical tool for nanomaterials,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(4), 565–579 (2015). [Crossref] [PubMed] Nielsen, T.. R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001). [Crossref] [PubMed] Ning, Y.. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996). [Crossref] [PubMed] Nishimura, H.. H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000). [Crossref] [PubMed] Nuansing, W.. I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017). [Crossref] [PubMed] Ohta, K.. A. K. Dutta, K. Kamada, and K. Ohta, “Spectroscopic studies of Nile red in organic solvents and polymers,” J. Photoch. Photobio. A 93(1), 57–64 (1996). [Crossref] Okumura, K.. H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000). [Crossref] [PubMed] Oriana, A.. F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017). [Crossref] Overgaard, M. H.. S. Krause, M. H. Overgaard, and T. Vosch, “Photon energy dependent micro-Raman spectroscopy with a continuum laser source,” Sci. Rep. 8(1), 11621 (2018). [Crossref] [PubMed] Park, S.. A.-Y. Jee, S. Park, H. Kwon, and M. Lee, “Excited state dynamics of Nile red in polymers,” Chem. Phys. Lett. 477(1-3), 112–115 (2009). [Crossref] Pepperkok, R.. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003). [Crossref] [PubMed] Perri, A.. A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018). [Crossref] [PubMed] A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017). [Crossref] [PubMed] E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted). Phalippou, D.. N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011). [Crossref] Pian, Q.. Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017). [Crossref] [PubMed] Piatkowski, L.. L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7(1), 10411 (2016). [Crossref] [PubMed] Polli, D.. A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018). [Crossref] [PubMed] F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017). [Crossref] A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017). [Crossref] [PubMed] E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted). Poly, S.. I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017). [Crossref] [PubMed] Prabhat, P.. P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014). [Crossref] [PubMed] Preda, F.. A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018). [Crossref] [PubMed] F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017). [Crossref] A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017). [Crossref] [PubMed] Réhault, J.. F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017). [Crossref] Rich, T. C.. P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014). [Crossref] [PubMed] Ried, T.. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996). [Crossref] [PubMed] Rietdorf, J.. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003). [Crossref] [PubMed] Rodier, J.-C.. N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011). [Crossref] Roth, G. A.. G. A. Roth, S. Tahiliani, N. M. Neu-Baker, and S. A. Brenner, “Hyperspectral microscopy as an analytical tool for nanomaterials,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(4), 565–579 (2015). [Crossref] [PubMed] Roudjane, M.. N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011). [Crossref] Ruch, R.. R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001). [Crossref] [PubMed] Ryder, A. G.. D. Melnikau, S. Elcoroaristizabal, and A. G. Ryder, “An excitation emission fluorescence lifetime spectrometer using a frequency doubled supercontinuum laser source,” Methods Appl. Fluoresc. 6(4), 045007 (2018). [Crossref] [PubMed] Schoell, B.. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996). [Crossref] [PubMed] Schröck, E.. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996). [Crossref] [PubMed] Schultz, R. A.. R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001). [Crossref] [PubMed] Shirai, T.. H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000). [Crossref] [PubMed] Shortreed, M. R.. Y. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72(19), 4640–4645 (2000). [Crossref] [PubMed] Shyu, Y.. S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017). [Crossref] [PubMed] Sinsuebphon, N.. Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017). [Crossref] [PubMed] Smith, K. W.. S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018). [Crossref] Soenksen, D.. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996). [Crossref] [PubMed] Sørensen, T. J.. R. Arppe-Tabbara, M. R. Carro-Temboury, C. Hempel, T. Vosch, and T. J. Sørensen, “Luminescence from lanthanide (III) ions bound to the glycocalyx of Chinese hamster ovary cells,” Chemistry 24(46), 11885–11889 (2018). [Crossref] [PubMed] Speicher, M. R.. M. R. Speicher, S. G. Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12(4), 368–375 (1996). [Crossref] [PubMed] Stappert, S.. Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013). [Crossref] [PubMed] Strahl, H.. H. Strahl, F. Bürmann, and L. W. Hamoen, “The actin homologue MreB organizes the bacterial cell membrane,” Nat. Commun. 5(1), 3442 (2014). [Crossref] [PubMed] Streiter, M.. M. Streiter, S. Krause, C. von Borczyskowski, and C. Deibel, “Dynamics of single-molecule stokes shifts: Influence of conformation and environment,” J. Phys. Chem. Lett. 7(21), 4281–4284 (2016). [Crossref] [PubMed] Tahiliani, S.. G. A. Roth, S. Tahiliani, N. M. Neu-Baker, and S. A. Brenner, “Hyperspectral microscopy as an analytical tool for nanomaterials,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(4), 565–579 (2015). [Crossref] [PubMed] Talmi, A.. Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996). [Crossref] Thyrhaug, E.. A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017). [Crossref] [PubMed] E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted). Tkaczyk, T. S.. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010). [Crossref] [PubMed] Tropiano, M.. Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015). [Crossref] [PubMed] Tsurui, H.. H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000). [Crossref] [PubMed] Van Do, K.. J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012). [Crossref] van Hulst, N. F.. L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7(1), 10411 (2016). [Crossref] [PubMed] Veldman, T.. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996). [Crossref] [PubMed] Viola, D.. A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018). [Crossref] [PubMed] von Borczyskowski, C.. M. Streiter, S. Krause, C. von Borczyskowski, and C. Deibel, “Dynamics of single-molecule stokes shifts: Influence of conformation and environment,” J. Phys. Chem. Lett. 7(21), 4281–4284 (2016). [Crossref] [PubMed] Vosch, T.. R. Arppe-Tabbara, M. R. Carro-Temboury, C. Hempel, T. Vosch, and T. J. Sørensen, “Luminescence from lanthanide (III) ions bound to the glycocalyx of Chinese hamster ovary cells,” Chemistry 24(46), 11885–11889 (2018). [Crossref] [PubMed] S. Krause, M. H. Overgaard, and T. Vosch, “Photon energy dependent micro-Raman spectroscopy with a continuum laser source,” Sci. Rep. 8(1), 11621 (2018). [Crossref] [PubMed] Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015). [Crossref] [PubMed] Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013). [Crossref] [PubMed] E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted). Wang, W.. S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018). [Crossref] Wang, Y.. Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013). [Crossref] [PubMed] Ward, D. C.. M. R. Speicher, S. G. Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12(4), 368–375 (1996). [Crossref] [PubMed] Wienberg, J.. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996). [Crossref] [PubMed] Winkelman, J. W.. W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999). [Crossref] [PubMed] Wyatt, R.. R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001). [Crossref] [PubMed] Xiang, L.. S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017). [Crossref] [PubMed] Xu, D.. Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013). [Crossref] [PubMed] Xu, K.. R. Yan, S. Moon, S. J. Kenny, and K. Xu, “Spectrally resolved and functional super-resolution microscopy via ultrahigh-throughput single-molecule spectroscopy,” Acc. Chem. Res. 51(3), 697–705 (2018). [Crossref] [PubMed] S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017). [Crossref] [PubMed] Yan, R.. R. Yan, S. Moon, S. J. Kenny, and K. Xu, “Spectrally resolved and functional super-resolution microscopy via ultrahigh-throughput single-molecule spectroscopy,” Acc. Chem. Res. 51(3), 697–705 (2018). [Crossref] [PubMed] S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017). [Crossref] [PubMed] Yao, R.. Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017). [Crossref] [PubMed] Yeung, E. S.. Y. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72(19), 4640–4645 (2000). [Crossref] [PubMed] Young, I. T.. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006). [Crossref] [PubMed] Zavaleta, J. R.. R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001). [Crossref] [PubMed] Zhang, H.. S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018). [Crossref] Zimmermann, T.. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003). [Crossref] [PubMed] Acc. Chem. Res. (1). R. Yan, S. Moon, S. J. Kenny, and K. Xu, “Spectrally resolved and functional super-resolution microscopy via ultrahigh-throughput single-molecule spectroscopy,” Acc. Chem. Res. 51(3), 697–705 (2018). [Crossref] [PubMed] Anal. Chem. (1). Y. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72(19), 4640–4645 (2000). [Crossref] [PubMed] Appl. Phys. Lett. (1). J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012). [Crossref] Chem. Commun. (Camb.) (1). Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015). [Crossref] [PubMed] Chem. Phys. Lett. (2). A. Kawski, P. Bojarski, and B. Kukliński, “Estimation of ground- and excited-state dipole moments of Nile red dye from solvatochromic effect on absorption and fluorescence spectra,” Chem. Phys. Lett. 463(4-6), 410–412 (2008). [Crossref] A.-Y. Jee, S. Park, H. Kwon, and M. Lee, “Excited state dynamics of Nile red in polymers,” Chem. Phys. Lett. 477(1-3), 112–115 (2009). [Crossref] Chemistry (1). R. Arppe-Tabbara, M. R. Carro-Temboury, C. Hempel, T. Vosch, and T. J. Sørensen, “Luminescence from lanthanide (III) ions bound to the glycocalyx of Chinese hamster ovary cells,” Chemistry 24(46), 11885–11889 (2018). [Crossref] [PubMed] Cytometry (1). R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001). [Crossref] [PubMed] Cytometry A (1). Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006). [Crossref] [PubMed] FEBS Lett. (1). T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003). [Crossref] [PubMed] IEEE J. Sel. Top. Quant. (1). F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017). [Crossref] J. Am. Chem. Soc. (2). S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017). [Crossref] [PubMed] Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013). [Crossref] [PubMed] J. Biomed. Opt. (3). G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014). [Crossref] [PubMed] Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013). [Crossref] [PubMed] P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014). [Crossref] [PubMed] J. Histochem. Cytochem. (1). H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000). [Crossref] [PubMed] J. Lipid Res. (1). P. Greenspan and S. D. Fowler, “Spectrofluorometric studies of the lipid probe, Nile red,” J. Lipid Res. 26(7), 781–789 (1985). [PubMed] J. Microsc.-Oxford (1). Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996). [Crossref] J. Photoch. Photobio. A (1). A. K. Dutta, K. Kamada, and K. Ohta, “Spectroscopic studies of Nile red in organic solvents and polymers,” J. Photoch. Photobio. A 93(1), 57–64 (1996). [Crossref] J. Phys. Chem. C (1). S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018). [Crossref] J. Phys. Chem. Lett. (1). M. Streiter, S. Krause, C. von Borczyskowski, and C. Deibel, “Dynamics of single-molecule stokes shifts: Influence of conformation and environment,” J. Phys. Chem. Lett. 7(21), 4281–4284 (2016). [Crossref] [PubMed] Light Sci. Appl. (1). D. Lepage, A. Jimenez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012). [Crossref] Methods Appl. Fluoresc. (1). D. Melnikau, S. Elcoroaristizabal, and A. G. Ryder, “An excitation emission fluorescence lifetime spectrometer using a frequency doubled supercontinuum laser source,” Methods Appl. Fluoresc. 6(4), 045007 (2018). [Crossref] [PubMed] Mikrochim. Acta (1). J. W. Brault, “High precision Fourier transform spectrometry: The critical role of phase corrections,” Mikrochim. Acta 93(1-6), 215–227 (1987). [Crossref] Nat. Commun. (3). H. Strahl, F. Bürmann, and L. W. Hamoen, “The actin homologue MreB organizes the bacterial cell membrane,” Nat. Commun. 5(1), 3442 (2014). [Crossref] [PubMed] L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7(1), 10411 (2016). [Crossref] [PubMed] I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017). [Crossref] [PubMed] Nat. Genet. (1). M. R. Speicher, S. G. Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12(4), 368–375 (1996). [Crossref] [PubMed] Nat. Med. (1). W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999). [Crossref] [PubMed] Nat. Photonics (2). Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017). [Crossref] [PubMed] N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011). [Crossref] Opt. Express (3). A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017). [Crossref] [PubMed] L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010). [Crossref] [PubMed] A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018). [Crossref] [PubMed] Opt. Lett. (1). D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012). [Crossref] [PubMed] Sci. Rep. (1). S. Krause, M. H. Overgaard, and T. Vosch, “Photon energy dependent micro-Raman spectroscopy with a continuum laser source,” Sci. Rep. 8(1), 11621 (2018). [Crossref] [PubMed] Science (1). E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996). [Crossref] [PubMed] Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. (1). G. A. Roth, S. Tahiliani, N. M. Neu-Baker, and S. A. Brenner, “Hyperspectral microscopy as an analytical tool for nanomaterials,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(4), 565–579 (2015). [Crossref] [PubMed] Other (3). J. R. Lakowicz, Principles of fluorescence spectroscopy (Springer, 2006). B. Valeur and M. N. Berberan-Santos, Molecular fluorescence: principles and applications (John Wiley & Sons, 2012). E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted). .
From: