您当前的位置: 首页 > 网页快照
OSA | Exposure study on UV-induced degradation of PTFE and ceramic optical diffusers
Abstract. We report on a study of the ultraviolet (UV)-induced degradation on optical grade polytetrafluoroethylene (PTFE) and ceramic diffuser samples. Long-term UV exposure may significantly alter the reflectance and lead to an error in the calibration of optical instruments. A large integrating sphere was used to irradiate the samples for 334.7 days at an irradiance level of 194.9  W/m2 . Samples were qualified and measured for reflectance factor, bidirectional reflectance distribution function, and fluorescence, before and after the exposure, and at 12-week intervals during the exposure. This study revealed significant differences between the aging behavior of ceramic and PTFE samples. Full Article    PDF Article OSA Recommended Articles Ultraviolet characterization of integrating spheres Ping-Shine Shaw, Zhigang Li, Uwe Arp, and Keith R. Lykke Appl. Opt. 46 (22) 5119-5128 (2007) Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet Georgi T. Georgiev and James J. Butler Appl. Opt. 46 (32) 7892-7899 (2007) Establishment and application of the 0/45 reflectance factor scale over the shortwave infrared Catherine C. Cooksey, David W. Allen, Benjamin K. Tsai, and Howard W. Yoon Appl. Opt. 54 (10) 3064-3071 (2015) More Recommended Articles Effect of polytetrafluoroethylene (PTFE) phase transition at 19°C on the use of Spectralon as a reference standard for reflectance Christopher P. Ball, Andrew P. Levick, Emma R. Woolliams, Paul D. Green, Martin R. Dury, Rainer Winkler, Andrew J. Deadman, Nigel P. Fox, and Martin D. King Appl. Opt. 52 (20) 4806-4812 (2013) Optical properties and quantum efficiency of thin-film alkali halides in the far ultraviolet Juan I. Larruquert, José A. Méndez, José A. Aznárez, Anton S. Tremsin, and Oswald H. W. Siegmund Appl. Opt. 41 (13) 2532-2540 (2002) References. View by:. Article Order. Year. Author. Publication. G. T. Georgiev and J. J. Butler, “Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet,” Appl. Opt. 46, 7892–7899 (2007). [Crossref] . W. Möller, K.-P. Nikolaus, and A. Höpe, “Degradation of the diffuse reflectance of Spectralon under low-level irradiation,” Metrologia 40, S212–S215 (2003). [Crossref] . G. T. Georgiev, J. J. Butler, K. J. Thome, L. A. Ramos-Izquierdo, L. Ding, L. J. Graziani, and G. A. Meadows, “Initial studies of the directional reflectance changes in pressed and sintered PTFE diffusers following exposure to contamination and ionizing radiation,” Metrologia 51, S319–S328 (2014). [Crossref] . J. E. Leland and A. V. Arecchi, “Phase 2 analysis of Spectralon material for use in on-board calibration systems for the medium resolution imaging spectrometer (MERIS),” Proc. SPIE 2475, 384–392 (1995). [Crossref] . C. J. Bruegge, A. E. Stiegman, R. A. Rainen, and A. W. Springsteen, “Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors,” Opt. Eng. 32, 805–814 (1993). [Crossref] . D. R. Gibbs, F. J. Duncan, R. P. Lambe, and T. M. Goodman, “Ageing of materials under intense ultraviolet radiation,” Metrologia 32, 601–607 (1995). [Crossref] . J. Sun and M. Wang, “Visible infrared imaging radiometer suite solar diffuser calibration and its challenges using a solar diffuser stability monitor,” Appl. Opt. 53, 8571–8584 (2014). [Crossref] . X. Xiong, A. Angal, J. Sun, T. Choi, and E. Johnson, “On-orbit performance of MODIS solar diffuser stability monitor,” J. Appl. Remote Sens. 8, 083514 (2014). [Crossref] . C. J. Bruegge, S. Val, D. J. Diner, V. Jovanovic, E. Gray, L. Di Girolamo, and G. Zhao, “Radiometric stability of the multi-angle imaging spectroradiometry (MISR) following 15 years on-orbit,” Proc. SPIE 9218, 92180N (2014). [Crossref] . S. Delwart and L. Bourg, “MERIS calibration: 10 years,” Proc. SPIE 8866, 88660Y (2013). [Crossref] . H. Li, H. Lyu, N. Liao, and W. Wu, “Measuring spatially varying, multispectral, ultraviolet bidirectional reflectance distribution function with an imaging spectrometer,” Opt. Eng. 55, 124106 (2016). [Crossref] . J. Chin, E. Byrd, N. Embree, J. Garver, B. Dickens, T. Finn, and J. Martin, “Accelerated UV weathering device based on integrating sphere technology,” Rev. Sci. Instrum. 75, 4951–4959 (2004). [Crossref] . J. Root, Mt. Baker Research L.L.C, 2921 Sylvan Street, Bellingham, Washington 98228-0370 (personal communication, 2014). . W. H. Venable, J. J. Hsia, and V. R. Weidner, “Establishing a scale of directional-hemispherical reflectance factor I: the Van den Akker method,” J. Res. Natl. Bur. Stand. 82, 29–55 (1977). [Crossref] . P. Y. Barnes, E. A. Early, and A. C. Parr, “Spectral reflectance” NIST Special Publication 250-48 (NIST, 1998). . Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111–1119 (2006). [Crossref] . “Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface,” [Online]. Available: https://www.astm.org/Standards/G173.htm . . “Standard solar constant and zero air mass solar spectral irradiance tables,” [Online]. Available: https://www.astm.org/Standards/E490.htm . . 2016 (1). H. Li, H. Lyu, N. Liao, and W. Wu, “Measuring spatially varying, multispectral, ultraviolet bidirectional reflectance distribution function with an imaging spectrometer,” Opt. Eng. 55, 124106 (2016). [Crossref] 2014 (4). X. Xiong, A. Angal, J. Sun, T. Choi, and E. Johnson, “On-orbit performance of MODIS solar diffuser stability monitor,” J. Appl. Remote Sens. 8, 083514 (2014). [Crossref] C. J. Bruegge, S. Val, D. J. Diner, V. Jovanovic, E. Gray, L. Di Girolamo, and G. Zhao, “Radiometric stability of the multi-angle imaging spectroradiometry (MISR) following 15 years on-orbit,” Proc. SPIE 9218, 92180N (2014). [Crossref] G. T. Georgiev, J. J. Butler, K. J. Thome, L. A. Ramos-Izquierdo, L. Ding, L. J. Graziani, and G. A. Meadows, “Initial studies of the directional reflectance changes in pressed and sintered PTFE diffusers following exposure to contamination and ionizing radiation,” Metrologia 51, S319–S328 (2014). [Crossref] J. Sun and M. Wang, “Visible infrared imaging radiometer suite solar diffuser calibration and its challenges using a solar diffuser stability monitor,” Appl. Opt. 53, 8571–8584 (2014). [Crossref] 2013 (1). S. Delwart and L. Bourg, “MERIS calibration: 10 years,” Proc. SPIE 8866, 88660Y (2013). [Crossref] 2007 (1). G. T. Georgiev and J. J. Butler, “Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet,” Appl. Opt. 46, 7892–7899 (2007). [Crossref] 2006 (1). Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111–1119 (2006). [Crossref] 2004 (1). J. Chin, E. Byrd, N. Embree, J. Garver, B. Dickens, T. Finn, and J. Martin, “Accelerated UV weathering device based on integrating sphere technology,” Rev. Sci. Instrum. 75, 4951–4959 (2004). [Crossref] 2003 (1). W. Möller, K.-P. Nikolaus, and A. Höpe, “Degradation of the diffuse reflectance of Spectralon under low-level irradiation,” Metrologia 40, S212–S215 (2003). [Crossref] 1995 (2). D. R. Gibbs, F. J. Duncan, R. P. Lambe, and T. M. Goodman, “Ageing of materials under intense ultraviolet radiation,” Metrologia 32, 601–607 (1995). [Crossref] J. E. Leland and A. V. Arecchi, “Phase 2 analysis of Spectralon material for use in on-board calibration systems for the medium resolution imaging spectrometer (MERIS),” Proc. SPIE 2475, 384–392 (1995). [Crossref] 1993 (1). C. J. Bruegge, A. E. Stiegman, R. A. Rainen, and A. W. Springsteen, “Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors,” Opt. Eng. 32, 805–814 (1993). [Crossref] 1977 (1). W. H. Venable, J. J. Hsia, and V. R. Weidner, “Establishing a scale of directional-hemispherical reflectance factor I: the Van den Akker method,” J. Res. Natl. Bur. Stand. 82, 29–55 (1977). [Crossref] Angal, A.. X. Xiong, A. Angal, J. Sun, T. Choi, and E. Johnson, “On-orbit performance of MODIS solar diffuser stability monitor,” J. Appl. Remote Sens. 8, 083514 (2014). [Crossref] Arecchi, A. V.. J. E. Leland and A. V. Arecchi, “Phase 2 analysis of Spectralon material for use in on-board calibration systems for the medium resolution imaging spectrometer (MERIS),” Proc. SPIE 2475, 384–392 (1995). [Crossref] Barnes, P. Y.. P. Y. Barnes, E. A. Early, and A. C. Parr, “Spectral reflectance” NIST Special Publication 250-48 (NIST, 1998). Bourg, L.. S. Delwart and L. Bourg, “MERIS calibration: 10 years,” Proc. SPIE 8866, 88660Y (2013). [Crossref] Brown, S. W.. Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111–1119 (2006). [Crossref] Bruegge, C. J.. C. J. Bruegge, S. Val, D. J. Diner, V. Jovanovic, E. Gray, L. Di Girolamo, and G. Zhao, “Radiometric stability of the multi-angle imaging spectroradiometry (MISR) following 15 years on-orbit,” Proc. SPIE 9218, 92180N (2014). [Crossref] C. J. Bruegge, A. E. Stiegman, R. A. Rainen, and A. W. Springsteen, “Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors,” Opt. Eng. 32, 805–814 (1993). [Crossref] Butler, J. J.. G. T. Georgiev, J. J. Butler, K. J. Thome, L. A. Ramos-Izquierdo, L. Ding, L. J. Graziani, and G. A. Meadows, “Initial studies of the directional reflectance changes in pressed and sintered PTFE diffusers following exposure to contamination and ionizing radiation,” Metrologia 51, S319–S328 (2014). [Crossref] G. T. Georgiev and J. J. Butler, “Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet,” Appl. Opt. 46, 7892–7899 (2007). [Crossref] Byrd, E.. J. Chin, E. Byrd, N. Embree, J. Garver, B. Dickens, T. Finn, and J. Martin, “Accelerated UV weathering device based on integrating sphere technology,” Rev. Sci. Instrum. 75, 4951–4959 (2004). [Crossref] Chin, J.. J. Chin, E. Byrd, N. Embree, J. Garver, B. Dickens, T. Finn, and J. Martin, “Accelerated UV weathering device based on integrating sphere technology,” Rev. Sci. Instrum. 75, 4951–4959 (2004). [Crossref] Choi, T.. X. Xiong, A. Angal, J. Sun, T. Choi, and E. Johnson, “On-orbit performance of MODIS solar diffuser stability monitor,” J. Appl. Remote Sens. 8, 083514 (2014). [Crossref] Delwart, S.. S. Delwart and L. Bourg, “MERIS calibration: 10 years,” Proc. SPIE 8866, 88660Y (2013). [Crossref] Di Girolamo, L.. C. J. Bruegge, S. Val, D. J. Diner, V. Jovanovic, E. Gray, L. Di Girolamo, and G. Zhao, “Radiometric stability of the multi-angle imaging spectroradiometry (MISR) following 15 years on-orbit,” Proc. SPIE 9218, 92180N (2014). [Crossref] Dickens, B.. J. Chin, E. Byrd, N. Embree, J. Garver, B. Dickens, T. Finn, and J. Martin, “Accelerated UV weathering device based on integrating sphere technology,” Rev. Sci. Instrum. 75, 4951–4959 (2004). [Crossref] Diner, D. J.. C. J. Bruegge, S. Val, D. J. Diner, V. Jovanovic, E. Gray, L. Di Girolamo, and G. Zhao, “Radiometric stability of the multi-angle imaging spectroradiometry (MISR) following 15 years on-orbit,” Proc. SPIE 9218, 92180N (2014). [Crossref] Ding, L.. G. T. Georgiev, J. J. Butler, K. J. Thome, L. A. Ramos-Izquierdo, L. Ding, L. J. Graziani, and G. A. Meadows, “Initial studies of the directional reflectance changes in pressed and sintered PTFE diffusers following exposure to contamination and ionizing radiation,” Metrologia 51, S319–S328 (2014). [Crossref] Duncan, F. J.. D. R. Gibbs, F. J. Duncan, R. P. Lambe, and T. M. Goodman, “Ageing of materials under intense ultraviolet radiation,” Metrologia 32, 601–607 (1995). [Crossref] Early, E. A.. P. Y. Barnes, E. A. Early, and A. C. Parr, “Spectral reflectance” NIST Special Publication 250-48 (NIST, 1998). Embree, N.. J. Chin, E. Byrd, N. Embree, J. Garver, B. Dickens, T. Finn, and J. Martin, “Accelerated UV weathering device based on integrating sphere technology,” Rev. Sci. Instrum. 75, 4951–4959 (2004). [Crossref] Finn, T.. J. Chin, E. Byrd, N. Embree, J. Garver, B. Dickens, T. Finn, and J. Martin, “Accelerated UV weathering device based on integrating sphere technology,” Rev. Sci. Instrum. 75, 4951–4959 (2004). [Crossref] Garver, J.. J. Chin, E. Byrd, N. Embree, J. Garver, B. Dickens, T. Finn, and J. Martin, “Accelerated UV weathering device based on integrating sphere technology,” Rev. Sci. Instrum. 75, 4951–4959 (2004). [Crossref] Georgiev, G. T.. G. T. Georgiev, J. J. Butler, K. J. Thome, L. A. Ramos-Izquierdo, L. Ding, L. J. Graziani, and G. A. Meadows, “Initial studies of the directional reflectance changes in pressed and sintered PTFE diffusers following exposure to contamination and ionizing radiation,” Metrologia 51, S319–S328 (2014). [Crossref] G. T. Georgiev and J. J. Butler, “Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet,” Appl. Opt. 46, 7892–7899 (2007). [Crossref] Gibbs, D. R.. D. R. Gibbs, F. J. Duncan, R. P. Lambe, and T. M. Goodman, “Ageing of materials under intense ultraviolet radiation,” Metrologia 32, 601–607 (1995). [Crossref] Goodman, T. M.. D. R. Gibbs, F. J. Duncan, R. P. Lambe, and T. M. Goodman, “Ageing of materials under intense ultraviolet radiation,” Metrologia 32, 601–607 (1995). [Crossref] Gray, E.. C. J. Bruegge, S. Val, D. J. Diner, V. Jovanovic, E. Gray, L. Di Girolamo, and G. Zhao, “Radiometric stability of the multi-angle imaging spectroradiometry (MISR) following 15 years on-orbit,” Proc. SPIE 9218, 92180N (2014). [Crossref] Graziani, L. J.. G. T. Georgiev, J. J. Butler, K. J. Thome, L. A. Ramos-Izquierdo, L. Ding, L. J. Graziani, and G. A. Meadows, “Initial studies of the directional reflectance changes in pressed and sintered PTFE diffusers following exposure to contamination and ionizing radiation,” Metrologia 51, S319–S328 (2014). [Crossref] Höpe, A.. W. Möller, K.-P. Nikolaus, and A. Höpe, “Degradation of the diffuse reflectance of Spectralon under low-level irradiation,” Metrologia 40, S212–S215 (2003). [Crossref] Hsia, J. J.. W. H. Venable, J. J. Hsia, and V. R. Weidner, “Establishing a scale of directional-hemispherical reflectance factor I: the Van den Akker method,” J. Res. Natl. Bur. Stand. 82, 29–55 (1977). [Crossref] Johnson, B. C.. Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111–1119 (2006). [Crossref] Johnson, E.. X. Xiong, A. Angal, J. Sun, T. Choi, and E. Johnson, “On-orbit performance of MODIS solar diffuser stability monitor,” J. Appl. Remote Sens. 8, 083514 (2014). [Crossref] Jovanovic, V.. C. J. Bruegge, S. Val, D. J. Diner, V. Jovanovic, E. Gray, L. Di Girolamo, and G. Zhao, “Radiometric stability of the multi-angle imaging spectroradiometry (MISR) following 15 years on-orbit,” Proc. SPIE 9218, 92180N (2014). [Crossref] Lambe, R. P.. D. R. Gibbs, F. J. Duncan, R. P. Lambe, and T. M. Goodman, “Ageing of materials under intense ultraviolet radiation,” Metrologia 32, 601–607 (1995). [Crossref] Leland, J. E.. J. E. Leland and A. V. Arecchi, “Phase 2 analysis of Spectralon material for use in on-board calibration systems for the medium resolution imaging spectrometer (MERIS),” Proc. SPIE 2475, 384–392 (1995). [Crossref] Li, H.. H. Li, H. Lyu, N. Liao, and W. Wu, “Measuring spatially varying, multispectral, ultraviolet bidirectional reflectance distribution function with an imaging spectrometer,” Opt. Eng. 55, 124106 (2016). [Crossref] Liao, N.. H. Li, H. Lyu, N. Liao, and W. Wu, “Measuring spatially varying, multispectral, ultraviolet bidirectional reflectance distribution function with an imaging spectrometer,” Opt. Eng. 55, 124106 (2016). [Crossref] Lykke, K. R.. Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111–1119 (2006). [Crossref] Lyu, H.. H. Li, H. Lyu, N. Liao, and W. Wu, “Measuring spatially varying, multispectral, ultraviolet bidirectional reflectance distribution function with an imaging spectrometer,” Opt. Eng. 55, 124106 (2016). [Crossref] Martin, J.. J. Chin, E. Byrd, N. Embree, J. Garver, B. Dickens, T. Finn, and J. Martin, “Accelerated UV weathering device based on integrating sphere technology,” Rev. Sci. Instrum. 75, 4951–4959 (2004). [Crossref] Meadows, G. A.. G. T. Georgiev, J. J. Butler, K. J. Thome, L. A. Ramos-Izquierdo, L. Ding, L. J. Graziani, and G. A. Meadows, “Initial studies of the directional reflectance changes in pressed and sintered PTFE diffusers following exposure to contamination and ionizing radiation,” Metrologia 51, S319–S328 (2014). [Crossref] Möller, W.. W. Möller, K.-P. Nikolaus, and A. Höpe, “Degradation of the diffuse reflectance of Spectralon under low-level irradiation,” Metrologia 40, S212–S215 (2003). [Crossref] Nikolaus, K.-P.. W. Möller, K.-P. Nikolaus, and A. Höpe, “Degradation of the diffuse reflectance of Spectralon under low-level irradiation,” Metrologia 40, S212–S215 (2003). [Crossref] Ohno, Y.. Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111–1119 (2006). [Crossref] Parr, A. C.. P. Y. Barnes, E. A. Early, and A. C. Parr, “Spectral reflectance” NIST Special Publication 250-48 (NIST, 1998). Rainen, R. A.. C. J. Bruegge, A. E. Stiegman, R. A. Rainen, and A. W. Springsteen, “Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors,” Opt. Eng. 32, 805–814 (1993). [Crossref] Ramos-Izquierdo, L. A.. G. T. Georgiev, J. J. Butler, K. J. Thome, L. A. Ramos-Izquierdo, L. Ding, L. J. Graziani, and G. A. Meadows, “Initial studies of the directional reflectance changes in pressed and sintered PTFE diffusers following exposure to contamination and ionizing radiation,” Metrologia 51, S319–S328 (2014). [Crossref] Root, J.. J. Root, Mt. Baker Research L.L.C, 2921 Sylvan Street, Bellingham, Washington 98228-0370 (personal communication, 2014). Springsteen, A. W.. C. J. Bruegge, A. E. Stiegman, R. A. Rainen, and A. W. Springsteen, “Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors,” Opt. Eng. 32, 805–814 (1993). [Crossref] Stiegman, A. E.. C. J. Bruegge, A. E. Stiegman, R. A. Rainen, and A. W. Springsteen, “Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors,” Opt. Eng. 32, 805–814 (1993). [Crossref] Sun, J.. J. Sun and M. Wang, “Visible infrared imaging radiometer suite solar diffuser calibration and its challenges using a solar diffuser stability monitor,” Appl. Opt. 53, 8571–8584 (2014). [Crossref] X. Xiong, A. Angal, J. Sun, T. Choi, and E. Johnson, “On-orbit performance of MODIS solar diffuser stability monitor,” J. Appl. Remote Sens. 8, 083514 (2014). [Crossref] Thome, K. J.. G. T. Georgiev, J. J. Butler, K. J. Thome, L. A. Ramos-Izquierdo, L. Ding, L. J. Graziani, and G. A. Meadows, “Initial studies of the directional reflectance changes in pressed and sintered PTFE diffusers following exposure to contamination and ionizing radiation,” Metrologia 51, S319–S328 (2014). [Crossref] Val, S.. C. J. Bruegge, S. Val, D. J. Diner, V. Jovanovic, E. Gray, L. Di Girolamo, and G. Zhao, “Radiometric stability of the multi-angle imaging spectroradiometry (MISR) following 15 years on-orbit,” Proc. SPIE 9218, 92180N (2014). [Crossref] Venable, W. H.. W. H. Venable, J. J. Hsia, and V. R. Weidner, “Establishing a scale of directional-hemispherical reflectance factor I: the Van den Akker method,” J. Res. Natl. Bur. Stand. 82, 29–55 (1977). [Crossref] Wang, M.. J. Sun and M. Wang, “Visible infrared imaging radiometer suite solar diffuser calibration and its challenges using a solar diffuser stability monitor,” Appl. Opt. 53, 8571–8584 (2014). [Crossref] Weidner, V. R.. W. H. Venable, J. J. Hsia, and V. R. Weidner, “Establishing a scale of directional-hemispherical reflectance factor I: the Van den Akker method,” J. Res. Natl. Bur. Stand. 82, 29–55 (1977). [Crossref] Wu, W.. H. Li, H. Lyu, N. Liao, and W. Wu, “Measuring spatially varying, multispectral, ultraviolet bidirectional reflectance distribution function with an imaging spectrometer,” Opt. Eng. 55, 124106 (2016). [Crossref] Xiong, X.. X. Xiong, A. Angal, J. Sun, T. Choi, and E. Johnson, “On-orbit performance of MODIS solar diffuser stability monitor,” J. Appl. Remote Sens. 8, 083514 (2014). [Crossref] Zhao, G.. C. J. Bruegge, S. Val, D. J. Diner, V. Jovanovic, E. Gray, L. Di Girolamo, and G. Zhao, “Radiometric stability of the multi-angle imaging spectroradiometry (MISR) following 15 years on-orbit,” Proc. SPIE 9218, 92180N (2014). [Crossref] Zong, Y.. Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111–1119 (2006). [Crossref] Appl. Opt. (3). G. T. Georgiev and J. J. Butler, “Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet,” Appl. Opt. 46, 7892–7899 (2007). [Crossref] J. Sun and M. Wang, “Visible infrared imaging radiometer suite solar diffuser calibration and its challenges using a solar diffuser stability monitor,” Appl. Opt. 53, 8571–8584 (2014). [Crossref] Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111–1119 (2006). [Crossref] J. Appl. Remote Sens. (1). X. Xiong, A. Angal, J. Sun, T. Choi, and E. Johnson, “On-orbit performance of MODIS solar diffuser stability monitor,” J. Appl. Remote Sens. 8, 083514 (2014). [Crossref] J. Res. Natl. Bur. Stand. (1). W. H. Venable, J. J. Hsia, and V. R. Weidner, “Establishing a scale of directional-hemispherical reflectance factor I: the Van den Akker method,” J. Res. Natl. Bur. Stand. 82, 29–55 (1977). [Crossref] Metrologia (3). D. R. Gibbs, F. J. Duncan, R. P. Lambe, and T. M. Goodman, “Ageing of materials under intense ultraviolet radiation,” Metrologia 32, 601–607 (1995). [Crossref] W. Möller, K.-P. Nikolaus, and A. Höpe, “Degradation of the diffuse reflectance of Spectralon under low-level irradiation,” Metrologia 40, S212–S215 (2003). [Crossref] G. T. Georgiev, J. J. Butler, K. J. Thome, L. A. Ramos-Izquierdo, L. Ding, L. J. Graziani, and G. A. Meadows, “Initial studies of the directional reflectance changes in pressed and sintered PTFE diffusers following exposure to contamination and ionizing radiation,” Metrologia 51, S319–S328 (2014). [Crossref] Opt. Eng. (2). C. J. Bruegge, A. E. Stiegman, R. A. Rainen, and A. W. Springsteen, “Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors,” Opt. Eng. 32, 805–814 (1993). [Crossref] H. Li, H. Lyu, N. Liao, and W. Wu, “Measuring spatially varying, multispectral, ultraviolet bidirectional reflectance distribution function with an imaging spectrometer,” Opt. Eng. 55, 124106 (2016). [Crossref] Proc. SPIE (3). J. E. Leland and A. V. Arecchi, “Phase 2 analysis of Spectralon material for use in on-board calibration systems for the medium resolution imaging spectrometer (MERIS),” Proc. SPIE 2475, 384–392 (1995). [Crossref] C. J. Bruegge, S. Val, D. J. Diner, V. Jovanovic, E. Gray, L. Di Girolamo, and G. Zhao, “Radiometric stability of the multi-angle imaging spectroradiometry (MISR) following 15 years on-orbit,” Proc. SPIE 9218, 92180N (2014). [Crossref] S. Delwart and L. Bourg, “MERIS calibration: 10 years,” Proc. SPIE 8866, 88660Y (2013). [Crossref] Rev. Sci. Instrum. (1). J. Chin, E. Byrd, N. Embree, J. Garver, B. Dickens, T. Finn, and J. Martin, “Accelerated UV weathering device based on integrating sphere technology,” Rev. Sci. Instrum. 75, 4951–4959 (2004). [Crossref] Other (4). J. Root, Mt. Baker Research L.L.C, 2921 Sylvan Street, Bellingham, Washington 98228-0370 (personal communication, 2014). P. Y. Barnes, E. A. Early, and A. C. Parr, “Spectral reflectance” NIST Special Publication 250-48 (NIST, 1998). “Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface,” [Online]. Available: https://www.astm.org/Standards/G173.htm . “Standard solar constant and zero air mass solar spectral irradiance tables,” [Online]. Available: https://www.astm.org/Standards/E490.htm . Cited By. OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here. Alert me when this article is cited. Click here to see a list of articles that cite this paper Figures (13). Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. Fig. 11. Fig. 12. Fig. 13. Fig. 1. DHRF of two samples before UV exposure as a function of wavelength. The expanded uncertainty (k=2) for these measurements is 0.005. Download Full Size PPT Slide PDF Fig. 2. BRF of two samples at 700 nm before aging as a function of viewing angle. The expanded uncertainty (k=2) for these measurements is 0.005. Download Full Size PPT Slide PDF Fig. 3. Comparison of SPHERE output and ASTM solar spectrum. Sum irradiance for the range from 275 to 450 nm is 194.9  W/m2 for the SPHERE and 46.2  W/m2 for the ASTM G173 spectrum, respectively. Download Full Size PPT Slide PDF Fig. 4. Normalized difference (%) in DHRF for the control PTFE sample at each characterization time as a function of wavelength. Download Full Size PPT Slide PDF Fig. 5. Normalized difference (%) in DHRF for a UV-exposed PTFE sample at each characterization time as a function of wavelength. Download Full Size PPT Slide PDF Fig. 6. Normalized difference (%) in DHRF for the control ceramic sample at each characterization time as a function of wavelength. Download Full Size PPT Slide PDF Fig. 7. Normalized difference (%) in DHRF for a UV-exposed ceramic sample at each characterization time as a function of wavelength. Download Full Size PPT Slide PDF Fig. 8. Normalized difference (%) in DHRF at 400 nm for PTFE samples as a function of characterization time. Download Full Size PPT Slide PDF Fig. 9. Normalized difference (%) in DHRF at 400 nm for ceramic samples as a function of characterization time. Download Full Size PPT Slide PDF Fig. 10. Normalized difference (%) in BRF at τ4 of all PTFE samples at 400 nm as a function of viewing angle. Download Full Size PPT Slide PDF Fig. 11. Normalized difference (%) in BRF at τ4 of all ceramic samples at 400 nm as a function of viewing angle. Download Full Size PPT Slide PDF Fig. 12. Normalized difference (%) in BRF at τ4 of all ceramic samples at 700 nm as a function of viewing angle. Download Full Size PPT Slide PDF Fig. 13. Difference in PBF for PTFE and ceramic samples at eight excitation wavelengths before and after UV exposure. Download Full Size PPT Slide PDF Equations (5). Equations on this page are rendered with MathJax. Learn more. (1) Rx(λ)=S(λ)−Sd(λ)Ss(λ)−Sd(λ)·Rs(λ), (2) fr=SrSi·RiRr·D2Ar·cos θr, (3) R=πfr. (4) %Fl(λex)=(100%)×∫λ1λfR(λ)I(λ)dλ−∫λ1λ2R(λ)I(λ)dλ∫λ1λfR(λ)I(λ)dλ, (5) ΔRτx(λ)=Rτx(λ)−Rτ0(λ)Rτ0(λ). .
From: