您当前的位置: 首页 > 网页快照
Anyonic interference and braiding phase in a Mach-Zehnder interferometer - Nature Physics
Abstract .
Fractional quantum Hall states have long been predicted to be a testing ground of fractional—anyonic—exchange statistics. These topological states, which can have either an Abelian or non-Abelian character, harbour quasiparticles with fractional charges. The charge of the quasiparticles can be measured by shot noise measurements, whereas their quantum statistics can be revealed by appropriate interference experiments. The multipath Fabry–Pérot electronic interferometer is easier to fabricate, but it is often plagued by Coulomb interactions, area breathing with the magnetic field and fluctuating charges. Yet, recent experiments with an adequately screened Fabry–Pérot interferometer allowed the observation of anyonic interference at a bulk filling factor of ν?=?1/3. Here we demonstrate the interference and braiding of anyons in an interaction-free two-path Mach–Zehnder interferometer tuned to bulk filling of ν?=?2/5 with an outermost ν?=?1/3 edge mode. Interference with this mode reveals a phase dependence that corresponds to the predicted anyonic braiding. This proves that a Mach–Zehnder interferometer is a powerful tool that probes the quantum statistics of complex anyonic states.
Access through your institution
Buy or subscribe
This is a preview of subscription content, access via your institution
Access options .
Access through your institution
Access through your institution
Change institution
Buy or subscribe
Subscription info for Chinese customers
We have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.
Go to naturechina.com
Buy article
Get time limited or full article access on ReadCube.
$32.00
Buy
All prices are NET prices.
Additional access options: .
Log in .
Learn about institutional subscriptions .
Fig. 1: Device structure and conductance quantization.
Fig. 2: Integer and fractional AB interference patterns.
Fig. 3: Charge determination via shot noise measurements and temperature-dependent visibility.
Fig. 4: Visibility in the integer and fractional regimes.
Data availability .
Source data are provided with this paper. All other data related to this paper are available from the corresponding author upon reasonable request.
References .
Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25 , 2185–2190 (1982).
Article ? ADS ? Google Scholar ?
Wen, X.-G. in Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford Univ. Press, 2004).
Kane, C. L. & Fisher, M. P. A. in Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low‐Dimensional Semiconductor Structures (eds Das Sarma, S. & Pinczuk, A.) (John Wiley, 1996).
Stern, A. Anyons and the quantum Hall effect—a pedagogical review. Ann. Phys. 323 , 204–249 (2008).
Article ? ADS ? MathSciNet ? MATH ? Google Scholar ?
Zheng, H. Z., Wei, H. P., Tsui, D. C. & Weimann, G. Gate-controlled transport in narrow GaAs/Al x Ga 1– x As heterostructures. Phys. Rev. B 34 , 5635–5638 (1986).
Article ? ADS ? Google Scholar ?
Heiblum, M. & Feldman, D. E. Edge probes of topological order. Int. J. Mod. Phys. A 35 , 18 (2020).
Article ? MathSciNet ? Google Scholar ?
Chang, A. M. Chiral Luttinger liquids at the fractional quantum Hall edge. Rev. Mod. Phys. 75 , 1449–1505 (2003).
Article ? ADS ? MathSciNet ? MATH ? Google Scholar ?
Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53 , 722–723 (1984).
Article ? ADS ? Google Scholar ?
dePicciotto, R. et al. Direct observation of a fractional charge. Nature 389 , 162–164 (1997).
Article ? ADS ? Google Scholar ?
Saminadayar, L., Glattli, D. C., Jin, Y. & Etienne, B. Observation of the e /3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79 , 2526–2529 (1997).
Article ? ADS ? Google Scholar ?
Leinaas, J. M. & Myrheim, J. On the theory of identical particles. Nuovo Cim. B 37 , 1–23 (1977).
Article ? ADS ? Google Scholar ?
Wilczek, F. Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett. 48 , 1144–1146 (1982).
Article ? ADS ? Google Scholar ?
Halperin, B. I. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52 , 1583–1586 (1984).
Article ? ADS ? Google Scholar ?
Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50 , 1395–1398 (1983).
Article ? ADS ? Google Scholar ?
Schuster, R. et al. Phase measurement in a quantum dot via a double-slit interference experiment. Nature 385 , 417–420 (1997).
Article ? ADS ? Google Scholar ?
Ofek, N. et al. Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proc. Natl Acad. Sci. USA 107 , 5276–5281 (2010).
Article ? ADS ? Google Scholar ?
Zhang, Y. M. et al. Distinct signatures for Coulomb blockade and Aharonov-Bohm interference in electronic Fabry-Perot interferometers. Phys. Rev. B 79 , 241304 (2009).
Article ? ADS ? Google Scholar ?
Chamon, C. D. C., Freed, D. E., Kivelson, S. A., Sondhi, S. L. & Wen, X. G. Two point-contact interferometer for quantum Hall systems. Phys. Rev. B 55 , 2331–2343 (1997).
Article ? ADS ? Google Scholar ?
McClure, D. T., Chang, W., Marcus, C. M., Pfeiffer, L. N. & West, K. W. Fabry-Perot interferometry with fractional charges. Phys. Rev. Lett. 108 , 256804 (2012).
Article ? ADS ? Google Scholar ?
Choi, H. K. et al. Robust electron pairing in the integer quantum Hall effect regime. Nat. Commun. 6 , 7435 (2015).
Article ? ADS ? Google Scholar ?
Nakamura, J. et al. Aharonov–Bohm interference of fractional quantum Hall edge modes. Nat. Phys. 15 , 563–569 (2019).
Article ? Google Scholar ?
Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16 , 931–936 (2020).
Article ? Google Scholar ?
Sivan, I. et al. Observation of interaction-induced modulations of a quantum Hall liquid’s area. Nat. Commun. 7 , 12184 (2016).
Article ? ADS ? Google Scholar ?
Rosenow, B. & Simon, S. H. Telegraph noise and the Fabry-Perot quantum Hall interferometer. Phys. Rev. B 85 , 201302 (2012).
Article ? ADS ? Google Scholar ?
Ji, Y. et al. An electronic Mach–Zehnder interferometer. Nature 422 , 415–418 (2003).
Article ? ADS ? Google Scholar ?
Neder, I., Heiblum, M., Levinson, Y., Mahalu, D. & Umansky, V. Unexpected behavior in a two-path electron interferometer. Phys. Rev. Lett. 96 , 016804 (2006).
Article ? ADS ? Google Scholar ?
Neder, I. et al. Interference between two indistinguishable electrons from independent sources. Nature 448 , 333–337 (2007).
Article ? ADS ? Google Scholar ?
Neder, I., Heiblum, M., Mahalu, D. & Umansky, V. Entanglement, dephasing, and phase recovery via cross-correlation measurements of electrons. Phys. Rev. Lett. 98 , 036803 (2007).
Article ? ADS ? Google Scholar ?
Roulleau, P. et al. Finite bias visibility of the electronic Mach-Zehnder interferometer. Phys. Rev. B 76 , 161309 (2007).
Article ? ADS ? Google Scholar ?
Law, K. T., Feldman, D. E. & Gefen, Y. Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74 , 045319 (2006).
Article ? ADS ? Google Scholar ?
Feldman, D. E. & Kitaev, A. Detecting non-Abelian statistics with an electronic Mach-Zehnder interferometer. Phys. Rev. Lett. 97 , 186803 (2006).
Article ? ADS ? Google Scholar ?
Roulleau, P. et al. Noise dephasing in edge states of the integer quantum Hall regime. Phys. Rev. Lett. 101 , 186803 (2008).
Article ? ADS ? Google Scholar ?
Roulleau, P. et al. Direct measurement of the coherence length of edge states in the integer quantum Hall regime. Phys. Rev. Lett. 100 , 126802 (2008).
Article ? ADS ? Google Scholar ?
Halperin, B. I., Stern, A., Neder, I. & Rosenow, B. Theory of the Fabry-Pérot quantum Hall interferometer. Phys. Rev. B 83 , 155440 (2011).
Article ? ADS ? Google Scholar ?
Rosenow, B. & Halperin, B. I. Influence of interactions on flux and back-gate period of quantum Hall interferometers. Phys. Rev. Lett. 98 , 106801 (2007).
Article ? ADS ? Google Scholar ?
Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D. & Umansky, V. Melting of interference in the fractional quantum Hall effect: appearance of neutral modes. Phys. Rev. Lett. 122 , 246801 (2019).
Article ? ADS ? Google Scholar ?
Gurman, I., Sabo, R., Heiblum, M., Umansky, V. & Mahalu, D. Dephasing of an electronic two-path interferometer. Phys. Rev. B 93 , 121412 (2016).
Article ? ADS ? Google Scholar ?
Goldstein, M. & Gefen, Y. Suppression of interference in quantum Hall Mach-Zehnder geometry by upstream neutral modes. Phys. Rev. Lett. 117 , 276804 (2016).
Article ? ADS ? Google Scholar ?
Inoue, H. et al. Proliferation of neutral modes in fractional quantum Hall states. Nat. Commun. 5 , 4067 (2014).
Article ? ADS ? Google Scholar ?
Biswas, S. et al. Shot noise does not always provide the quasiparticle charge. Nat. Phys. 18 , 1476–1481 (2022).
Khanna, U., Goldstein, M. & Gefen, Y. Fractional edge reconstruction in integer quantum Hall phases. Phys. Rev. B 103 , L121302 (2021).
Article ? ADS ? Google Scholar ?
Khanna, U., Goldstein, M. & Gefen, Y. Emergence of neutral modes in Laughlin-like fractional quantum Hall phases. Phys. Rev. Lett. 129 , 146801 (2022).
Ponomarenko, V. V. & Averin, D. V. Mach-Zehnder interferometer in the fractional quantum Hall regime. Phys. Rev. Lett. 99 , 066803 (2007).
Article ? ADS ? Google Scholar ?
Feldman, D. E., Gefen, Y., Kitaev, A., Law, K. T. & Stern, A. Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76 , 085333 (2007).
Article ? ADS ? Google Scholar ?
Campagnano, G. et al. Hanbury Brown-Twiss interference of anyons. Phys. Rev. Lett. 109 , 106802 (2012).
Article ? ADS ? Google Scholar ?
Kane, C. L. Telegraph noise and fractional statistics in the quantum Hall effect. Phys. Rev. Lett. 90 , 226802 (2003).
Article ? ADS ? Google Scholar ?
Thouless, D. & Gefen, Y. Fractional quantum Hall effect and multiple Aharonov-Bohm periods. Phys. Rev. Lett. 66 , 806–809 (1991).
Article ? ADS ? Google Scholar ?
Guyon, R., Devillard, P., Martin, T. & Safi, I. Klein factors in multiple fractional quantum Hall edge tunneling. Phys. Rev. B 65 , 153304 (2002).
Article ? ADS ? Google Scholar ?
Safi, I., Devillard, P. & Martin, T. Partition noise and statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 86 , 4628–4631 (2001).
Article ? ADS ? Google Scholar ?
Ofek, N. Interference Measurements at the Integer and Fractional Quantum Hall Effect . PhD thesis, Weizmann Institute of Science (2010).
Download references
Acknowledgements .
We acknowledge M. Banerjee, A. Das, D. E. Feldman, Y. Gefen, I. Neder and A. Stern for useful discussions, and the continuous support of the Sub-Micron Center staff. M.H. acknowledges support from the European Research Council under the European Community’s Seventh Framework Program (FP7/2007-2013)/ERC under grant agreement no. 713351 and the Minerva foundation under grant no. 713534.
Author information .
Authors and Affiliations .
Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
Hemanta Kumar Kundu,?Sourav Biswas,?Vladimir Umansky?&?Moty Heiblum
Quantum Machines, Tel Aviv, Israel
Nissim Ofek
Authors Hemanta Kumar Kundu View author publications
You can also search for this author in PubMed ? Google Scholar
Sourav Biswas View author publications
You can also search for this author in PubMed ? Google Scholar
Nissim Ofek View author publications
You can also search for this author in PubMed ? Google Scholar
Vladimir Umansky View author publications
You can also search for this author in PubMed ? Google Scholar
Moty Heiblum View author publications
You can also search for this author in PubMed ? Google Scholar
Contributions .
H.K.K. and S.B. designed and fabricated the devices. H.K.K. and S.B. performed the measurements and analysed the data with N.O. M.H. supervised the experiment and analysis. V.U. developed and grew the heterostructure supporting the two-dimensional electron gas. All the authors contributed to writing the manuscript.
Corresponding author .
Correspondence to Moty Heiblum .
Ethics declarations .
Competing interests .
The authors declare no competing interests.
Peer review .
Peer review information .
Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information .
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information .
Supplementary Information .
Supplementary Sections 1–9 and Figs. 1–9.
Source data .
Source Data Fig. 1 .
Source data for Fig. 1c.
Source Data Fig. 2 .
Source data for Fig. 2a,c.
Source Data Fig. 3 .
Source data for Fig. 3a–d.
Source Data Fig. 4 .
Source data for Fig. 4a–g.
Rights and permissions .
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and Permissions
About this article .
Cite this article .
Kundu, H.K., Biswas, S., Ofek, N. et al. Anyonic interference and braiding phase in a Mach-Zehnder interferometer. Nat. Phys. (2023). https://doi.org/10.1038/s41567-022-01899-z
Download citation
Received : 24 March 2022
Accepted : 25 November 2022
Published : 23 January 2023
DOI : https://doi.org/10.1038/s41567-022-01899-z
Share this article .
Anyone you share the following link with will be able to read this content:
Get shareable link Sorry, a shareable link is not currently available for this article.
Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative .
From:
系统抽取对象
地理     
(1)
(1)
系统抽取主题     
(1)  
(1)