游客,您好!欢迎您进入蓝细菌领域动态监测平台平台!登录 | 注册  科技信息监测服务平台  帮助中心  RSS
  您当前的位置: 首页 > 网页快照
Distributed quantum sensing with mode-entangled spin-squeezed atomic states - Nature
Abstract .
Quantum sensors are used for precision timekeeping, field sensing and quantum communication 1 , 2 , 3 . Comparisons among a distributed network of these sensors are capable of, for example, synchronizing clocks at different locations 4 , 5 , 6 , 7 , 8 . The performance of a sensor network is limited by technical challenges as well as the inherent noise associated with the quantum states used to realize the network 9 . For networks with only spatially localized entanglement at each node, the noise performance of the network improves at best with the square root of the number of nodes 10 . Here we demonstrate that spatially distributed entanglement between network nodes offers better scaling with network size. A shared quantum nondemolition measurement entangles a clock network with up to four nodes. This network provides up to 4.5?decibels better precision than one without spatially distributed entanglement, and 11.6?decibels improvement as compared to a network of sensors operating at the quantum projection noise limit. We demonstrate the generality of the approach with atomic clock and atomic interferometer protocols, in scientific and technologically relevant configurations optimized for intrinsically differential comparisons of sensor outputs.
Access through your institution
Buy or subscribe
This is a preview of subscription content, access via your institution
Access options .
Access through your institution
Access through your institution
Change institution
Buy or subscribe
Subscription info for Chinese customers
We have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.
Go to naturechina.com
Buy article
Get time limited or full article access on ReadCube.
$32.00
Buy
All prices are NET prices.
Additional access options: .
Log in .
Learn about institutional subscriptions .
Fig. 1: Atomic sensor sequence.
Fig. 2: Differential phase shift detection.
Fig. 3: Clock network sensitivity.
Fig. 4: Interferometer performance.
Data availability .
The datasets generated and analysed during this study are available from the corresponding author upon reasonable request.? Source data are provided with this paper.
Code availability .
The code used for the analysis is available from the corresponding author upon reasonable request.
References .
Grotti, J. et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 14 , 437–441 (2018).
Article ? CAS ? Google Scholar ?
McGrew, W. F. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564 , 87–90 (2018).
Article ? ADS ? CAS ? PubMed ? Google Scholar ?
Guo, X. et al. Distributed quantum sensing in a continuous-variable entangled network. Nat. Phys. 16 , 281–284 (2020).
Article ? CAS ? Google Scholar ?
Zhao, S.-R. et al. Field demonstration of distributed quantum sensing without post-selection. Phys. Rev. X 11 , 031009 (2021).
CAS ? Google Scholar ?
Zhang, Z. & Zhuang, Q. Distributed quantum sensing. Quantum Sci. Tech. 6 , 043001 (2021).
Article ? ADS ? Google Scholar ?
Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced positioning and clock synchronization. Nature 412 , 417–419 (2001).
Article ? ADS ? CAS ? PubMed ? Google Scholar ?
Beloy, K. et al. Frequency ratio measurements at 18-digit accuracy using an optical clock network. Nature 591 , 564–569 (2021).
Article ? ADS ? Google Scholar ?
Bothwell, T. et al. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 602 , 420–424 (2022).
Article ? ADS ? CAS ? PubMed ? Google Scholar ?
Pedrozo-Pe?afiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588 , 414–418 (2020).
Article ? ADS ? PubMed ? Google Scholar ?
Zheng, X. et al. Differential clock comparisons with a multiplexed optical lattice clock. Nature 602 , 425–430 (2022).
Article ? ADS ? CAS ? PubMed ? Google Scholar ?
Overstreet, C., Asenbaum, P., Curti, J., Kim, M. & Kasevich, M. A. Observation of a gravitational Aharonov–Bohm effect. Science 375 , 226–229 (2022).
Article ? ADS ? MathSciNet ? CAS ? PubMed ? Google Scholar ?
Liu, L.-Z. et al. Distributed quantum phase estimation with entangled photons. Nat. Photonics 15 , 137–142 (2021).
Article ? ADS ? CAS ? Google Scholar ?
Xia, Y. et al. Demonstration of a reconfigurable entangled radio-frequency photonic sensor network. Phys. Rev. Lett. 124 , 150502 (2020).
Article ? ADS ? CAS ? PubMed ? Google Scholar ?
Lu, H. et al. Experimental quantum network coding. npj Quantum Inf. 5 , 89 (2019).
Bodine, M. I. et al. Optical atomic clock comparison through turbulent air. Phys. Rev. Res. 2 , 033395 (2020).
Article ? CAS ? Google Scholar ?
Matsukevich, D. N. et al. Entanglement of remote atomic qubits. Phys. Rev. Lett. 96 , 030405 (2006).
Article ? ADS ? CAS ? PubMed ? Google Scholar ?
Chou, C. W. et al. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature 438 , 828–832 (2005).
Article ? ADS ? CAS ? PubMed ? Google Scholar ?
Simon, J., Tanji, H., Ghosh, S. & Vuleti?, V. Single-photon bus connecting spin-wave quantum memories. Nat. Phys. 3 , 765–769 (2007).
Article ? CAS ? Google Scholar ?
Muralidharan, S. et al. Optimal architectures for long distance quantum communication. Sci. Rep. 6 , 20463 (2016).
Gündo?an, M.et al. Proposal for space-borne quantum memories for global quantum networking. npj Quantum Inf. 7 , 128 (2021).
Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10 , 582–587 (2014).
Article ? Google Scholar ?
Polzik, E. S. & Ye, J. Entanglement and spin squeezing in a network of distant optical lattice clocks. Phys. Rev. A 93 , 021404 (2016).
Article ? ADS ? Google Scholar ?
Leroux, I. D., Schleier-Smith, M. H. & Vuleti?, V. Orientation-dependent entanglement lifetime in a squeezed atomic clock. Phys. Rev. Lett. 104 , 250801 (2010).
Gessner, M., Pezzè, L. & Smerzi, A. Sensitivity bounds for multiparameter quantum metrology. Phys. Rev. Lett. 121 , 130503 (2018).
Article ? ADS ? CAS ? PubMed ? Google Scholar ?
Zhuang, Q., Zhang, Z. & Shapiro, J. H. Distributed quantum sensing using continuous-variable multipartite entanglement. Phys. Rev. A 97 , 032329 (2018).
Article ? ADS ? CAS ? Google Scholar ?
Eckert, K. et al. Differential atom interferometry beyond the standard quantum limit. Phys. Rev. A 73 , 013814 (2006).
Article ? ADS ? Google Scholar ?
Nichol, B. C. et al. An elementary quantum network of entangled optical atomic clocks. Nature 609 , 689–694 (2022).
Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413 , 400–403 (2001).
Fadel, M., Zibold, T., Décamps, B. & Treutlein, P. Spatial entanglement patterns and Einstein–Podolsky–Rosen steering in Bose–Einstein condensates. Science 360 , 409–413 (2018).
Article ? ADS ? MathSciNet ? CAS ? PubMed ? MATH ? Google Scholar ?
Lange, K. et al. Entanglement between two spatially separated atomic modes. Science 360 , 416–418 (2018).
Article ? ADS ? MathSciNet ? CAS ? PubMed ? MATH ? Google Scholar ?
Kunkel, P. et al. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds. Science 360 , 413–416 (2018).
Article ? ADS ? MathSciNet ? CAS ? PubMed ? MATH ? Google Scholar ?
Anders, F. et al. Momentum entanglement for atom interferometry. Phys. Rev. Lett. 127 , 140402 (2021).
Article ? ADS ? MathSciNet ? CAS ? PubMed ? Google Scholar ?
Greve, G. P., Luo, C., Wu, B. & Thompson, J. K. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 610 , 472–477 (2022).
Article ? ADS ? CAS ? PubMed ? PubMed Central ? Google Scholar ?
Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529 , 505–508 (2016).
Article ? ADS ? CAS ? PubMed ? MATH ? Google Scholar ?
Malia, B. K., Martínez-Rincón, J., Wu, Y., Hosten, O. & Kasevich, M. A. Free space Ramsey spectroscopy in rubidium with noise below the quantum projection limit. Phys. Rev. Lett. 125 , 043202 (2020).
Fadel, M., Yadin, B., Mao, Y., Byrnes, T. & Gessner, M. Multiparameter quantum metrology and mode entanglement with spatially split nonclassical spin states. Preprint at https://arxiv.org/abs/2201.11081 (2022).
Gessner, M., Smerzi, A. & Pezzè, L. Multiparameter squeezing for optimal quantum enhancements in sensor networks. Nat. Commun. 11 , 3817 (2020).
Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50 , 67–88 (1994).
Article ? ADS ? CAS ? PubMed ? Google Scholar ?
Chaudhary, M. et al. Stroboscopic quantum nondemolition measurements for enhanced entanglement generation between atomic ensembles. Phys. Rev. A 105 , 022443 (2022).
Article ? ADS ? CAS ? Google Scholar ?
Abe, M. et al. Matter-wave atomic gradiometer interferometric sensor (MAGIS-100). Quantum Sci. Tech. 6 , 044003 (2021).
Article ? ADS ? Google Scholar ?
Zhan, M.-S. et al. ZAIGA: Zhaoshan long-baseline atom interferometer gravitation antenna. Int. J. Mod. Phys. D 29 , 1940005 (2019).
Article ? ADS ? Google Scholar ?
Wcis?o, P. et al. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4 , 6501 (2018).
Safronova, M. S., Porsev, S. G., Sanner, C. & Ye, J. Two clock transitions in neutral Yb for the highest sensitivity to variations of the fine-structure constant. Phys. Rev. Lett. 120 , 173001 (2018).
Article ? ADS ? CAS ? PubMed ? Google Scholar ?
Tino, G. M. Testing gravity with cold atom interferometry: results and prospects. Quantum Sci. Tech. 6 , 024014 (2021).
Article ? ADS ? Google Scholar ?
Jing, Y., Fadel, M., Ivannikov, V. & Byrnes, T. Split spin-squeezed Bose–Einstein condensates. New J. Phys. 21 , 093038 (2019).
Article ? ADS ? MathSciNet ? CAS ? Google Scholar ?
Parazzoli, L. P., Hankin, A. M. & Biedermann, G. W. Observation of free-space single-atom matter wave interference. Phys. Rev. Lett. 109 , 230401 (2012).
Article ? ADS ? CAS ? PubMed ? Google Scholar ?
Malitesta, M., Smerzi, A. & Pezzè, L. Distributed quantum sensing with squeezed-vacuum light in a configurable network of Mach–Zehnder interferometers Preprint at https://arxiv.org/abs/2109.09178 (2021).
Kasevich, M. & Chu, S. Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67 , 181–184 (1991).
Article ? ADS ? CAS ? PubMed ? Google Scholar ?
Malia, B. K. Integration of Spin Squeezed States Into Free Space Atomic Sensors . PhD thesis, Stanford Univ. (2021).
Download references
Acknowledgements .
We acknowledge support from Department of Energy award DE-SC0019174-0001, the Department of Energy Q-NEXT NQI, a Vannevar Bush Faculty Fellowship and NSF QLCI Award OMA – 2016244.
Author information .
Author notes Julián Martínez-Rincón
Present address: Quantum Information Science and Technology Laboratory, Instrumentation Division, Brookhaven National Laboratory, Upton, NY, USA
These authors contributed equally: Benjamin K. Malia and Yunfan Wu
Authors and Affiliations .
Department of Physics, Stanford University, Stanford, CA, USA
Benjamin K. Malia,?Julián Martínez-Rincón?&?Mark A. Kasevich
School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
Benjamin K. Malia
Department of Applied Physics, Stanford University, Stanford, CA, USA
Yunfan Wu?&?Mark A. Kasevich
Authors Benjamin K. Malia View author publications
You can also search for this author in PubMed ? Google Scholar
Yunfan Wu View author publications
You can also search for this author in PubMed ? Google Scholar
Julián Martínez-Rincón View author publications
You can also search for this author in PubMed ? Google Scholar
Mark A. Kasevich View author publications
You can also search for this author in PubMed ? Google Scholar
Contributions .
B.K.M., Y.W. and J.M.-R. designed, constructed and characterized the experiment. B.K.M. and Y.W. performed data collection and analysis. M.A.K. supervised the research. All authors contributed to the manuscript.
Corresponding author .
Correspondence to Mark A. Kasevich .
Ethics declarations .
Competing interests .
M.A.K. serves as Chief Scientist, Consulting and is a shareholder of AOSense, Inc. All other authors declare no competing interests.
Peer review .
Peer review information .
Nature thanks Augusto Smerzi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information .
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables .
Extended Data Fig. 1 Apparatus. .
The atoms (black circle) are localized near the centre of the cavity. The Raman lasers enter the vacuum chamber at a 45° angle to the cavity axis. The reflected light from the probe laser is used in the homodyne detection.
Extended Data Fig. 2 Mode separation. .
Contrast of the collective fluorescent measurement as a function of separation time between two 0.33?μs Raman π pulses. Solid curve is an exponential fit to the data with a decay rate of 0.46?μs. Note that T ?=?0 corresponds to a single pulse with a total time of 2π. Error bars represent a 95% confidence interval.
Source Data
Extended Data Fig. 3 Interferometer sequence timing. .
Space time diagram in the inertial frame of a single-mode interferometer. Solid (dashed) lines represent the trajectory of the spin down (up) state. White (grey) waves represent the finite time of the microwave (Raman) pulses.
Supplementary information .
Peer Review File .
Source data .
Source Data Fig. 2 .
Source Data Fig. 3 .
Source Data Fig. 4 .
Source Data Extended Data Fig. 2 .
Rights and permissions .
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Reprints and Permissions
About this article .
Cite this article .
Malia, B.K., Wu, Y., Martínez-Rincón, J. et al. Distributed quantum sensing with mode-entangled spin-squeezed atomic states. Nature (2022). https://doi.org/10.1038/s41586-022-05363-z
Download citation
Received : 12 May 2022
Accepted : 16 August 2022
Published : 23 November 2022
DOI : https://doi.org/10.1038/s41586-022-05363-z
Share this article .
Anyone you share the following link with will be able to read this content:
Get shareable link Sorry, a shareable link is not currently available for this article.
Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative
Comments .
By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate. .
From:
系统抽取主题     
(1)  
(1)  
(1)  
(1)  
(1)