您当前的位置: 首页 > 网页快照
OSA | Inline laser power measurement by photon momentum
Accessible Full-text access provided by National Science Library, CAS Abstract. Full Article. Figures (3). Tables (1). Equations (1). References (5). Cited By. Back to Top. ?Get PDF . Abstract. We present a novel measurement scheme and instrumentation for quantifying laser power by means of photon momentum. The optical design is optimized such that the incoming laser beam is minimally perturbed and is available for other purposes along the incoming beam axis. Additionally, the geometry of the instrument gives access to the small but measurable transmittance between two passive mirrors that face the force sensor. The force sensor is based on a commercially available weighing instrument (“scale”) that has a temporal response of approximately 5?s and a readability of approximately 1?μg (?2??W ). Our measurement results demonstrate beam profile and power for 500?W, but the mirror and mass (or force) calibration are suitable for very high power up to 50?kW and beyond. The optics are based on commercially available, off-the-shelf mirrors optimized for the angle of incidence and maximum reflectance at the wavelength of 1070?nm. The size of the complete instrument has an input aperture of ?75??mm , but this constraint is only a matter of optimizing the beam path and box geometry. Full Article? ? PDF Article OSA Recommended Articles Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure Paul Williams, Joshua Hadler, Frank Maring, Robert Lee, Kyle Rogers, Brian Simonds, Matthew Spidell, Michelle Stephens, Ari Feldman, and John Lehman Opt. Express 25 (4) 4382-4392 (2017) Use of radiation pressure for measurement of high-power laser emission Paul A. Williams, Joshua A. Hadler, Robert Lee, Frank C. Maring, and John H. Lehman Opt. Lett. 38 (20) 4248-4251 (2013) Direct measurement of radiation pressure and circulating power inside a passive optical cavity Ryan Wagner, Felipe Guzman, Akobuije Chijioke, Gurpreet Kaur Gulati, Matthias Keller, and Gordon Shaw Opt. Express 26 (18) 23492-23506 (2018) More Recommended Articles Photometric calibration of the EUV spectroheliometer on ATM E. M. Reeves, J. G. Timothy, M. C. E. Huber, and G. L. Withbroe Appl. Opt. 16 (4) 849-857 (1977) NBS specular reflectometer–spectrophotometer Victor R. Weidner and Jack J. Hsia Appl. Opt. 19 (8) 1268-1273 (1980) References. View by:. Article Order. Year. Author. Publication. P. A. Williams, J. A. Hadler, R. Lee, F. C. Maring, and J. H. Lehman, “Use of radiation pressure for measurement of high-power laser emission,” Opt. Lett. 38, 4248–4251 (2013). [Crossref] . P. Williams, A. Artusio-Glimpse, J. Hadler, D. King, T. Vo, K. Rogers, I. Ryger, and J. Lehman, “Radiation-pressure enabled traceable laser sources at CW powers up to 50??kW,” IEEE Trans. Instrum. Meas. (to be published). . P. N. Lebedev, “Untersuchungen über die Druckkr?fte des Lichtes,” Ann. Phys. 311, 433–458 (1901). [Crossref] . E. E. Nichols and G. F. Hull, “The pressure due to radiation,” Phys. Rev. 17, 26–50 (1903). . P. Williams, J. Hadler, F. Maring, R. Lee, K. Rogers, B. Simonds, M. Spidell, M. Stephens, A. Feldman, and J. Lehman, “Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure,” Opt. Express 25, 4382–4392 (2017). [Crossref] . 2017 (1). P. Williams, J. Hadler, F. Maring, R. Lee, K. Rogers, B. Simonds, M. Spidell, M. Stephens, A. Feldman, and J. Lehman, “Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure,” Opt. Express 25, 4382–4392 (2017). [Crossref] 2013 (1). P. A. Williams, J. A. Hadler, R. Lee, F. C. Maring, and J. H. Lehman, “Use of radiation pressure for measurement of high-power laser emission,” Opt. Lett. 38, 4248–4251 (2013). [Crossref] 1903 (1). E. E. Nichols and G. F. Hull, “The pressure due to radiation,” Phys. Rev. 17, 26–50 (1903). 1901 (1). P. N. Lebedev, “Untersuchungen über die Druckkr?fte des Lichtes,” Ann. Phys. 311, 433–458 (1901). [Crossref] Artusio-Glimpse, A.. P. Williams, A. Artusio-Glimpse, J. Hadler, D. King, T. Vo, K. Rogers, I. Ryger, and J. Lehman, “Radiation-pressure enabled traceable laser sources at CW powers up to 50??kW,” IEEE Trans. Instrum. Meas. (to be published). Feldman, A.. P. Williams, J. Hadler, F. Maring, R. Lee, K. Rogers, B. Simonds, M. Spidell, M. Stephens, A. Feldman, and J. Lehman, “Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure,” Opt. Express 25, 4382–4392 (2017). [Crossref] Hadler, J.. P. Williams, J. Hadler, F. Maring, R. Lee, K. Rogers, B. Simonds, M. Spidell, M. Stephens, A. Feldman, and J. Lehman, “Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure,” Opt. Express 25, 4382–4392 (2017). [Crossref] P. Williams, A. Artusio-Glimpse, J. Hadler, D. King, T. Vo, K. Rogers, I. Ryger, and J. Lehman, “Radiation-pressure enabled traceable laser sources at CW powers up to 50??kW,” IEEE Trans. Instrum. Meas. (to be published). Hadler, J. A.. P. A. Williams, J. A. Hadler, R. Lee, F. C. Maring, and J. H. Lehman, “Use of radiation pressure for measurement of high-power laser emission,” Opt. Lett. 38, 4248–4251 (2013). [Crossref] Hull, G. F.. E. E. Nichols and G. F. Hull, “The pressure due to radiation,” Phys. Rev. 17, 26–50 (1903). King, D.. P. Williams, A. Artusio-Glimpse, J. Hadler, D. King, T. Vo, K. Rogers, I. Ryger, and J. Lehman, “Radiation-pressure enabled traceable laser sources at CW powers up to 50??kW,” IEEE Trans. Instrum. Meas. (to be published). Lebedev, P. N.. P. N. Lebedev, “Untersuchungen über die Druckkr?fte des Lichtes,” Ann. Phys. 311, 433–458 (1901). [Crossref] Lee, R.. P. Williams, J. Hadler, F. Maring, R. Lee, K. Rogers, B. Simonds, M. Spidell, M. Stephens, A. Feldman, and J. Lehman, “Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure,” Opt. Express 25, 4382–4392 (2017). [Crossref] P. A. Williams, J. A. Hadler, R. Lee, F. C. Maring, and J. H. Lehman, “Use of radiation pressure for measurement of high-power laser emission,” Opt. Lett. 38, 4248–4251 (2013). [Crossref] Lehman, J.. P. Williams, J. Hadler, F. Maring, R. Lee, K. Rogers, B. Simonds, M. Spidell, M. Stephens, A. Feldman, and J. Lehman, “Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure,” Opt. Express 25, 4382–4392 (2017). [Crossref] P. Williams, A. Artusio-Glimpse, J. Hadler, D. King, T. Vo, K. Rogers, I. Ryger, and J. Lehman, “Radiation-pressure enabled traceable laser sources at CW powers up to 50??kW,” IEEE Trans. Instrum. Meas. (to be published). Lehman, J. H.. P. A. Williams, J. A. Hadler, R. Lee, F. C. Maring, and J. H. Lehman, “Use of radiation pressure for measurement of high-power laser emission,” Opt. Lett. 38, 4248–4251 (2013). [Crossref] Maring, F.. P. Williams, J. Hadler, F. Maring, R. Lee, K. Rogers, B. Simonds, M. Spidell, M. Stephens, A. Feldman, and J. Lehman, “Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure,” Opt. Express 25, 4382–4392 (2017). [Crossref] Maring, F. C.. P. A. Williams, J. A. Hadler, R. Lee, F. C. Maring, and J. H. Lehman, “Use of radiation pressure for measurement of high-power laser emission,” Opt. Lett. 38, 4248–4251 (2013). [Crossref] Nichols, E. E.. E. E. Nichols and G. F. Hull, “The pressure due to radiation,” Phys. Rev. 17, 26–50 (1903). Rogers, K.. P. Williams, J. Hadler, F. Maring, R. Lee, K. Rogers, B. Simonds, M. Spidell, M. Stephens, A. Feldman, and J. Lehman, “Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure,” Opt. Express 25, 4382–4392 (2017). [Crossref] P. Williams, A. Artusio-Glimpse, J. Hadler, D. King, T. Vo, K. Rogers, I. Ryger, and J. Lehman, “Radiation-pressure enabled traceable laser sources at CW powers up to 50??kW,” IEEE Trans. Instrum. Meas. (to be published). Ryger, I.. P. Williams, A. Artusio-Glimpse, J. Hadler, D. King, T. Vo, K. Rogers, I. Ryger, and J. Lehman, “Radiation-pressure enabled traceable laser sources at CW powers up to 50??kW,” IEEE Trans. Instrum. Meas. (to be published). Simonds, B.. P. Williams, J. Hadler, F. Maring, R. Lee, K. Rogers, B. Simonds, M. Spidell, M. Stephens, A. Feldman, and J. Lehman, “Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure,” Opt. Express 25, 4382–4392 (2017). [Crossref] Spidell, M.. P. Williams, J. Hadler, F. Maring, R. Lee, K. Rogers, B. Simonds, M. Spidell, M. Stephens, A. Feldman, and J. Lehman, “Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure,” Opt. Express 25, 4382–4392 (2017). [Crossref] Stephens, M.. P. Williams, J. Hadler, F. Maring, R. Lee, K. Rogers, B. Simonds, M. Spidell, M. Stephens, A. Feldman, and J. Lehman, “Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure,” Opt. Express 25, 4382–4392 (2017). [Crossref] Vo, T.. P. Williams, A. Artusio-Glimpse, J. Hadler, D. King, T. Vo, K. Rogers, I. Ryger, and J. Lehman, “Radiation-pressure enabled traceable laser sources at CW powers up to 50??kW,” IEEE Trans. Instrum. Meas. (to be published). Williams, P.. P. Williams, J. Hadler, F. Maring, R. Lee, K. Rogers, B. Simonds, M. Spidell, M. Stephens, A. Feldman, and J. Lehman, “Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure,” Opt. Express 25, 4382–4392 (2017). [Crossref] P. Williams, A. Artusio-Glimpse, J. Hadler, D. King, T. Vo, K. Rogers, I. Ryger, and J. Lehman, “Radiation-pressure enabled traceable laser sources at CW powers up to 50??kW,” IEEE Trans. Instrum. Meas. (to be published). Williams, P. A.. P. A. Williams, J. A. Hadler, R. Lee, F. C. Maring, and J. H. Lehman, “Use of radiation pressure for measurement of high-power laser emission,” Opt. Lett. 38, 4248–4251 (2013). [Crossref] Ann. Phys. (1). P. N. Lebedev, “Untersuchungen über die Druckkr?fte des Lichtes,” Ann. Phys. 311, 433–458 (1901). [Crossref] Opt. Express (1). P. Williams, J. Hadler, F. Maring, R. Lee, K. Rogers, B. Simonds, M. Spidell, M. Stephens, A. Feldman, and J. Lehman, “Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure,” Opt. Express 25, 4382–4392 (2017). [Crossref] Opt. Lett. (1). P. A. Williams, J. A. Hadler, R. Lee, F. C. Maring, and J. H. Lehman, “Use of radiation pressure for measurement of high-power laser emission,” Opt. Lett. 38, 4248–4251 (2013). [Crossref] Phys. Rev. (1). E. E. Nichols and G. F. Hull, “The pressure due to radiation,” Phys. Rev. 17, 26–50 (1903). Other (1). P. Williams, A. Artusio-Glimpse, J. Hadler, D. King, T. Vo, K. Rogers, I. Ryger, and J. Lehman, “Radiation-pressure enabled traceable laser sources at CW powers up to 50??kW,” IEEE Trans. Instrum. Meas. (to be published). Cited By. OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here. Alert me when this article is cited. Click here to see a list of articles that cite this paper Figures (3). Fig. 1. Fig. 2. Fig. 3. Fig. 1. General overview of the design. The cutaway (inset) illustrates a mirror angle necessary for the horizontally incident beam to transmit unperturbed. Note that for our initial version, the cube side length is approximately 305?mm (12 inches) on a side. Download Full Size PPT Slide PDF Fig. 2. Representation of the geometry of the first mirror in relation to the mirror on the force sensor and the relationship of the beam profilometer to the passive mirrors and the transmitted beam. Download Full Size PPT Slide PDF Fig. 3. Two-dimensional cross section of beam profile measurement for a 500?W beam from a Yb-doped fiber laser during the radiation pressure power measurement. The profiler frame acquisition rate was 11?Hz. Download Full Size PPT Slide PDF Tables (1). Table 1. Measurement Uncertaintiesa View Table Equations (1). Equations on this page are rendered with MathJax. Learn more. (1) 2U(P,Δt)=2uscale2+umirror2+uangle2+(σpPnΔt)2+γT2. .
From: