您当前的位置: 首页 > 资源详细信息

Jelena Vuckovic: From inverse design to implementation of practical (quantum) photonics

Combining state-of-the-art optimization and machine learning techniques with high-speed electromagnetic solvers offers a new approach to "inverse" design and implement classical and quantum photonic circuits with superior properties, including robustness to errors in fabrication and environment, compact footprints, novel functionalities, and high efficiencies. In this plenary talk, Jelena Vuckovic of Stanford University illustrates this with a number of demonstrated devices in silicon, diamond, and silicon carbide, including wavelength and polarization splitters and converters, power splitters, couplers, nonlinear optical isolators, on-chip laser driven particle accelerators, and efficient quantum emitter-photon interfaces. Jelena Vuckovic is a professor of electrical engineering at Stanford, where she leads the Nanoscale and Quantum Photonics Lab. Vuckovic has won numerous awards including the Humboldt Prize and the Presidential Early Career Award for Scientists and Engineers. She is a Fellow of APS, OSA, and IEEE. Related SPIE content: Jelena Vuckovic: Designing innovative structures for efficient optical devices From inverse design to implementation of practical photonics From inverse design to implementation of practical and robust photonics.

原始网站图片
 增加监测目标对象/主题,请 登录 直接在原文中划词!