您当前的位置: 首页 > 资源详细信息
资源基本信息 
来源机构: Optics Express
来源目录: Optics Express
发布日期: Mar 18, 2019
资源类型: 415.46KB
资源性质: 科技论文
重要度:    
资源评价:

资源推荐:

Coherent-hybrid STED: high contrast sub-diffraction imaging using a bi-vortex depletion beam

References. View by:. Article Order. Year. Author. Publication. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [Crossref] [PubMed] . R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002). [Crossref] [PubMed] . M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005). [Crossref] [PubMed] . S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [Crossref] [PubMed] . E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [Crossref] [PubMed] . M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006). [Crossref] [PubMed] . T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000). [Crossref] [PubMed] . M. Dyba and S. W. Hell, “Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002). [Crossref] [PubMed] . M. Leutenegger, C. Eggeling, and S. W. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18(25), 26417–26429 (2010). [Crossref] [PubMed] . T. Kaldewey, A. V. Kuhlmann, S. R. Valentin, A. Ludwig, A. D. Wieck, and R. J. Warburton, “Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch,” Nat. Photonics 12(2), 68–72 (2018). [Crossref] . J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007). [Crossref] [PubMed] . E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009). [Crossref] . M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005). [Crossref] [PubMed] . J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25(4), 191–193 (2000). [Crossref] [PubMed] . J. Heine, C. A. Wurm, J. Keller-Findeisen, A. Schönle, B. Harke, M. Reuss, F. R. Winter, and G. Donnert, “Three dimensional live-cell STED microscopy at increased depth using a water immersion objective,” Rev. Sci. Instrum. 89(5), 053701 (2018). [Crossref] [PubMed] . P. Török and P. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004). [Crossref] [PubMed] . S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, “Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy,” Opt. Express 18(2), 1657–1666 (2010). [Crossref] [PubMed] . B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett. 8(5), 1309–1313 (2008). [Crossref] [PubMed] . B. R. Patton, D. Burke, D. Owald, T. J. Gould, J. Bewersdorf, and M. J. Booth, “Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics,” Opt. Express 24(8), 8862–8876 (2016). [Crossref] [PubMed] . K. Y. Han and T. Ha, “Dual-color three-dimensional STED microscopy with a single high-repetition-rate laser,” Opt. Lett. 40(11), 2653–2656 (2015). [Crossref] [PubMed] . Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012). [Crossref] [PubMed] . Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt. 13(12), 125704 (2011). [Crossref] . J. Antonello, E. B. Kromann, D. Burke, J. Bewersdorf, and M. J. Booth, “Coma aberrations in combined two- and three-dimensional STED nanoscopy,” Opt. Lett. 41(15), 3631–3634 (2016). [Crossref] [PubMed] . J. Antonello, D. Burke, and M. J. Booth, “Aberrations in stimulated emission depletion (STED) microscopy,” Opt. Commun. 404, 203–209 (2017). [Crossref] [PubMed] . X. Weng, X. Gao, H. Guo, and S. Zhuang, “Creation of tunable multiple 3D dark spots with cylindrical vector beam,” Appl. Opt. 53(11), 2470–2476 (2014). [Crossref] [PubMed] . C. Alpmann, M. Esseling, P. Rose, and C. Denz, “Holographic optical bottle beams,” Appl. Phys. Lett. 100(11), 111101 (2012). [Crossref] . Y. Zhang, “Generation of three-dimensional dark spots with a perfect light shell with a radially polarized Laguerre-Gaussian beam,” Appl. Opt. 49(32), 6217–6223 (2010). [Crossref] [PubMed] . Z. Zhang, H. Fan, H.-F. Xu, J. Qu, and W. Huang, “Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic,” J. Opt. 17(6), 065611 (2015). [Crossref] . L. Gong, W. Liu, Q. Zhao, Y. Ren, X. Qiu, M. Zhong, and Y. Li, “Controllable light capsules employing modified Bessel-Gauss beams,” Sci. Rep. 6(1), 29001 (2016). [Crossref] [PubMed] . W. Condell, “Fraunhofer diffraction from a circular annular aperture with helical phase factor,” J. Opt. Soc. Am. A 2(2), 206–208 (1985). [Crossref] . Y. Kozawa and S. Sato, “Dark-spot formation by vector beams,” Opt. Lett. 33(20), 2326–2328 (2008). [Crossref] [PubMed] . A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011). [Crossref] . B. Wang, J. Shi, T. Zhang, X. Xu, Y. Cao, and X. Li, “Improved lateral resolution with an annular vortex depletion beam in STED microscopy,” Opt. Lett. 42(23), 4885–4888 (2017). [Crossref] [PubMed] . M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013). . C. Sheppard and Z. Hegedus, “Axial behavior of pupil-plane filters,” J. Opt. Soc. Am. A 5(5), 643–647 (1988). [Crossref] . B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. 2. Structure of the Image Field in an Aplanatic System,” Proc R Soc Lon Ser-A253, 358–379 (1959). . B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008). [Crossref] [PubMed] . V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005). [Crossref] [PubMed] . A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008). [Crossref] [PubMed] . T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express 19(14), 13351–13357 (2011). [Crossref] [PubMed] . L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94(17), 178104 (2005). [Crossref] [PubMed] . C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells--new frontiers in membrane and neurobiology,” J. Neurochem. 126(2), 203–212 (2013). [Crossref] [PubMed] . C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009). [Crossref] [PubMed] . K. Sozanski, E. Sisamakis, X. Zhang, and R. Holyst, “Quantitative fluorescence correlation spectroscopy in three-dimensional systems under stimulated emission depletion conditions,” Optica 4(8), 982–988 (2017). [Crossref] . R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013). [Crossref] [PubMed] . P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11(3), 163–169 (2017). [Crossref] . G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8(7), 571–573 (2011). [Crossref] [PubMed] . L. Lanzanò, I. Coto Hernández, M. Castello, E. Gratton, A. Diaspro, and G. Vicidomini, “Encoding and decoding spatio-temporal information for super-resolution microscopy,” Nat. Commun. 6(1), 6701 (2015). [Crossref] [PubMed] . J. Heine, M. Reuss, B. Harke, E. D’Este, S. J. Sahl, and S. W. Hell, “Adaptive-illumination STED nanoscopy,” Proc. Natl. Acad. Sci. U.S.A. 114(37), 9797–9802 (2017). [Crossref] [PubMed] . F. Göttfert, T. Pleiner, J. Heine, V. Westphal, D. Görlich, S. J. Sahl, and S. W. Hell, “Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2125–2130 (2017). [Crossref] [PubMed] . L. Wang, B. Chen, W. Yan, Z. Yang, X. Peng, D. Lin, X. Weng, T. Ye, and J. Qu, “Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach,” Nanoscale 10(34), 16252–16260 (2018). [Crossref] [PubMed] . T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012). [Crossref] [PubMed] . F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017). [Crossref] [PubMed] . J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005). . M. Abramowitz and I. A. Stegun, “Handbook of mathematical function: with formulas, graphs and mathematical tables,” in Handbook of mathematical function: with formulas, graphs and mathematical tables (Dover Publications, 1965). . 2018 (3). T. Kaldewey, A. V. Kuhlmann, S. R. Valentin, A. Ludwig, A. D. Wieck, and R. J. Warburton, “Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch,” Nat. Photonics 12(2), 68–72 (2018). [Crossref] J. Heine, C. A. Wurm, J. Keller-Findeisen, A. Schönle, B. Harke, M. Reuss, F. R. Winter, and G. Donnert, “Three dimensional live-cell STED microscopy at increased depth using a water immersion objective,” Rev. Sci. Instrum. 89(5), 053701 (2018). [Crossref] [PubMed] L. Wang, B. Chen, W. Yan, Z. Yang, X. Peng, D. Lin, X. Weng, T. Ye, and J. Qu, “Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach,” Nanoscale 10(34), 16252–16260 (2018). [Crossref] [PubMed] 2017 (7). J. Heine, M. Reuss, B. Harke, E. D’Este, S. J. Sahl, and S. W. Hell, “Adaptive-illumination STED nanoscopy,” Proc. Natl. Acad. Sci. U.S.A. 114(37), 9797–9802 (2017). [Crossref] [PubMed] F. Göttfert, T. Pleiner, J. Heine, V. Westphal, D. Görlich, S. J. Sahl, and S. W. Hell, “Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2125–2130 (2017). [Crossref] [PubMed] P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11(3), 163–169 (2017). [Crossref] F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017). [Crossref] [PubMed] J. Antonello, D. Burke, and M. J. Booth, “Aberrations in stimulated emission depletion (STED) microscopy,” Opt. Commun. 404, 203–209 (2017). [Crossref] [PubMed] K. Sozanski, E. Sisamakis, X. Zhang, and R. Holyst, “Quantitative fluorescence correlation spectroscopy in three-dimensional systems under stimulated emission depletion conditions,” Optica 4(8), 982–988 (2017). [Crossref] B. Wang, J. Shi, T. Zhang, X. Xu, Y. Cao, and X. Li, “Improved lateral resolution with an annular vortex depletion beam in STED microscopy,” Opt. Lett. 42(23), 4885–4888 (2017). [Crossref] [PubMed] 2016 (3). B. R. Patton, D. Burke, D. Owald, T. J. Gould, J. Bewersdorf, and M. J. Booth, “Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics,” Opt. Express 24(8), 8862–8876 (2016). [Crossref] [PubMed] J. Antonello, E. B. Kromann, D. Burke, J. Bewersdorf, and M. J. Booth, “Coma aberrations in combined two- and three-dimensional STED nanoscopy,” Opt. Lett. 41(15), 3631–3634 (2016). [Crossref] [PubMed] L. Gong, W. Liu, Q. Zhao, Y. Ren, X. Qiu, M. Zhong, and Y. Li, “Controllable light capsules employing modified Bessel-Gauss beams,” Sci. Rep. 6(1), 29001 (2016). [Crossref] [PubMed] 2015 (3). Z. Zhang, H. Fan, H.-F. Xu, J. Qu, and W. Huang, “Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic,” J. Opt. 17(6), 065611 (2015). [Crossref] L. Lanzanò, I. Coto Hernández, M. Castello, E. Gratton, A. Diaspro, and G. Vicidomini, “Encoding and decoding spatio-temporal information for super-resolution microscopy,” Nat. Commun. 6(1), 6701 (2015). [Crossref] [PubMed] K. Y. Han and T. Ha, “Dual-color three-dimensional STED microscopy with a single high-repetition-rate laser,” Opt. Lett. 40(11), 2653–2656 (2015). [Crossref] [PubMed] 2014 (1). X. Weng, X. Gao, H. Guo, and S. Zhuang, “Creation of tunable multiple 3D dark spots with cylindrical vector beam,” Appl. Opt. 53(11), 2470–2476 (2014). [Crossref] [PubMed] 2013 (2). R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013). [Crossref] [PubMed] C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells--new frontiers in membrane and neurobiology,” J. Neurochem. 126(2), 203–212 (2013). [Crossref] [PubMed] 2012 (3). T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012). [Crossref] [PubMed] C. Alpmann, M. Esseling, P. Rose, and C. Denz, “Holographic optical bottle beams,” Appl. Phys. Lett. 100(11), 111101 (2012). [Crossref] Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012). [Crossref] [PubMed] 2011 (4). T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express 19(14), 13351–13357 (2011). [Crossref] [PubMed] A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011). [Crossref] G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8(7), 571–573 (2011). [Crossref] [PubMed] Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt. 13(12), 125704 (2011). [Crossref] 2010 (3). S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, “Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy,” Opt. Express 18(2), 1657–1666 (2010). [Crossref] [PubMed] Y. Zhang, “Generation of three-dimensional dark spots with a perfect light shell with a radially polarized Laguerre-Gaussian beam,” Appl. Opt. 49(32), 6217–6223 (2010). [Crossref] [PubMed] M. Leutenegger, C. Eggeling, and S. W. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18(25), 26417–26429 (2010). [Crossref] [PubMed] 2009 (2). C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009). [Crossref] [PubMed] E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009). [Crossref] 2008 (4). B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett. 8(5), 1309–1313 (2008). [Crossref] [PubMed] A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008). [Crossref] [PubMed] B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008). [Crossref] [PubMed] Y. Kozawa and S. Sato, “Dark-spot formation by vector beams,” Opt. Lett. 33(20), 2326–2328 (2008). [Crossref] [PubMed] 2007 (1). J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007). [Crossref] [PubMed] 2006 (3). S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [Crossref] [PubMed] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [Crossref] [PubMed] M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006). [Crossref] [PubMed] 2005 (4). M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005). [Crossref] [PubMed] M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005). [Crossref] [PubMed] V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005). [Crossref] [PubMed] L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94(17), 178104 (2005). [Crossref] [PubMed] 2004 (1). P. Török and P. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004). [Crossref] [PubMed] 2002 (2). R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002). [Crossref] [PubMed] M. Dyba and S. W. Hell, “Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002). [Crossref] [PubMed] 2000 (2). T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000). [Crossref] [PubMed] J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25(4), 191–193 (2000). [Crossref] [PubMed] 1994 (1). S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [Crossref] [PubMed] 1988 (1). C. Sheppard and Z. Hegedus, “Axial behavior of pupil-plane filters,” J. Opt. Soc. Am. A 5(5), 643–647 (1988). [Crossref] 1985 (1). W. Condell, “Fraunhofer diffraction from a circular annular aperture with helical phase factor,” J. Opt. Soc. Am. A 2(2), 206–208 (1985). [Crossref] Alpmann, C.. C. Alpmann, M. Esseling, P. Rose, and C. Denz, “Holographic optical bottle beams,” Appl. Phys. Lett. 100(11), 111101 (2012). [Crossref] Antonello, J.. J. Antonello, D. Burke, and M. J. Booth, “Aberrations in stimulated emission depletion (STED) microscopy,” Opt. Commun. 404, 203–209 (2017). [Crossref] [PubMed] J. Antonello, E. B. Kromann, D. Burke, J. Bewersdorf, and M. J. Booth, “Coma aberrations in combined two- and three-dimensional STED nanoscopy,” Opt. Lett. 41(15), 3631–3634 (2016). [Crossref] [PubMed] Arlt, J.. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25(4), 191–193 (2000). [Crossref] [PubMed] Balzarotti, F.. F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017). [Crossref] [PubMed] Barrantes, F. J.. C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells--new frontiers in membrane and neurobiology,” J. Neurochem. 126(2), 203–212 (2013). [Crossref] [PubMed] Bates, M.. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006). [Crossref] [PubMed] Belov, V. N.. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009). [Crossref] [PubMed] Betzig, E.. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [Crossref] [PubMed] Bewersdorf, J.. B. R. Patton, D. Burke, D. Owald, T. J. Gould, J. Bewersdorf, and M. J. Booth, “Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics,” Opt. Express 24(8), 8862–8876 (2016). [Crossref] [PubMed] J. Antonello, E. B. Kromann, D. Burke, J. Bewersdorf, and M. J. Booth, “Coma aberrations in combined two- and three-dimensional STED nanoscopy,” Opt. Lett. 41(15), 3631–3634 (2016). [Crossref] [PubMed] T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express 19(14), 13351–13357 (2011). [Crossref] [PubMed] Blom, H.. L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94(17), 178104 (2005). [Crossref] [PubMed] Bonifacino, J. S.. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [Crossref] [PubMed] Booth, M. J.. J. Antonello, D. Burke, and M. J. Booth, “Aberrations in stimulated emission depletion (STED) microscopy,” Opt. Commun. 404, 203–209 (2017). [Crossref] [PubMed] J. Antonello, E. B. Kromann, D. Burke, J. Bewersdorf, and M. J. Booth, “Coma aberrations in combined two- and three-dimensional STED nanoscopy,” Opt. Lett. 41(15), 3631–3634 (2016). [Crossref] [PubMed] B. R. Patton, D. Burke, D. Owald, T. J. Gould, J. Bewersdorf, and M. J. Booth, “Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics,” Opt. Express 24(8), 8862–8876 (2016). [Crossref] [PubMed] Brakemann, T.. T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012). [Crossref] [PubMed] Burke, D.. J. Antonello, D. Burke, and M. J. Booth, “Aberrations in stimulated emission depletion (STED) microscopy,” Opt. Commun. 404, 203–209 (2017). [Crossref] [PubMed] B. R. Patton, D. Burke, D. Owald, T. J. Gould, J. Bewersdorf, and M. J. Booth, “Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics,” Opt. Express 24(8), 8862–8876 (2016). [Crossref] [PubMed] J. Antonello, E. B. Kromann, D. Burke, J. Bewersdorf, and M. J. Booth, “Coma aberrations in combined two- and three-dimensional STED nanoscopy,” Opt. Lett. 41(15), 3631–3634 (2016). [Crossref] [PubMed] Cao, Y.. B. Wang, J. Shi, T. Zhang, X. Xu, Y. Cao, and X. Li, “Improved lateral resolution with an annular vortex depletion beam in STED microscopy,” Opt. Lett. 42(23), 4885–4888 (2017). [Crossref] [PubMed] Castello, M.. L. Lanzanò, I. Coto Hernández, M. Castello, E. Gratton, A. Diaspro, and G. Vicidomini, “Encoding and decoding spatio-temporal information for super-resolution microscopy,” Nat. Commun. 6(1), 6701 (2015). [Crossref] [PubMed] Chen, B.. L. Wang, B. Chen, W. Yan, Z. Yang, X. Peng, D. Lin, X. Weng, T. Ye, and J. Qu, “Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach,” Nanoscale 10(34), 16252–16260 (2018). [Crossref] [PubMed] Cheng, Y.. S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, “Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy,” Opt. Express 18(2), 1657–1666 (2010). [Crossref] [PubMed] Condell, W.. W. Condell, “Fraunhofer diffraction from a circular annular aperture with helical phase factor,” J. Opt. Soc. Am. A 2(2), 206–208 (1985). [Crossref] Coto Hernández, I.. L. Lanzanò, I. Coto Hernández, M. Castello, E. Gratton, A. Diaspro, and G. Vicidomini, “Encoding and decoding spatio-temporal information for super-resolution microscopy,” Nat. Commun. 6(1), 6701 (2015). [Crossref] [PubMed] Cremer, C.. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002). [Crossref] [PubMed] D’Este, E.. J. Heine, M. Reuss, B. Harke, E. D’Este, S. J. Sahl, and S. W. Hell, “Adaptive-illumination STED nanoscopy,” Proc. Natl. Acad. Sci. U.S.A. 114(37), 9797–9802 (2017). [Crossref] [PubMed] Davidson, M. W.. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [Crossref] [PubMed] Deng, S.. S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, “Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy,” Opt. Express 18(2), 1657–1666 (2010). [Crossref] [PubMed] Denz, C.. C. Alpmann, M. Esseling, P. Rose, and C. Denz, “Holographic optical bottle beams,” Appl. Phys. Lett. 100(11), 111101 (2012). [Crossref] Diaspro, A.. L. Lanzanò, I. Coto Hernández, M. Castello, E. Gratton, A. Diaspro, and G. Vicidomini, “Encoding and decoding spatio-temporal information for super-resolution microscopy,” Nat. Commun. 6(1), 6701 (2015). [Crossref] [PubMed] Donnert, G.. J. Heine, C. A. Wurm, J. Keller-Findeisen, A. Schönle, B. Harke, M. Reuss, F. R. Winter, and G. Donnert, “Three dimensional live-cell STED microscopy at increased depth using a water immersion objective,” Rev. Sci. Instrum. 89(5), 053701 (2018). [Crossref] [PubMed] Dyba, M.. M. Dyba and S. W. Hell, “Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002). [Crossref] [PubMed] T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000). [Crossref] [PubMed] Eggeling, C.. C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells--new frontiers in membrane and neurobiology,” J. Neurochem. 126(2), 203–212 (2013). [Crossref] [PubMed] T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012). [Crossref] [PubMed] G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8(7), 571–573 (2011). [Crossref] [PubMed] M. Leutenegger, C. Eggeling, and S. W. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18(25), 26417–26429 (2010). [Crossref] [PubMed] C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009). [Crossref] [PubMed] E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009). [Crossref] M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005). [Crossref] [PubMed] L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94(17), 178104 (2005). [Crossref] [PubMed] Egner, A.. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000). [Crossref] [PubMed] Eilers, Y.. F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017). [Crossref] [PubMed] Elf, J.. F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017). [Crossref] [PubMed] Engelhardt, J.. G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8(7), 571–573 (2011). [Crossref] [PubMed] Esseling, M.. C. Alpmann, M. Esseling, P. Rose, and C. Denz, “Holographic optical bottle beams,” Appl. Phys. Lett. 100(11), 111101 (2012). [Crossref] Fan, H.. Z. Zhang, H. Fan, H.-F. Xu, J. Qu, and W. Huang, “Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic,” J. Opt. 17(6), 065611 (2015). [Crossref] Gao, P.. P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11(3), 163–169 (2017). [Crossref] Gao, X.. X. Weng, X. Gao, H. Guo, and S. Zhuang, “Creation of tunable multiple 3D dark spots with cylindrical vector beam,” Appl. Opt. 53(11), 2470–2476 (2014). [Crossref] [PubMed] Girirajan, T. P.. S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [Crossref] [PubMed] Gong, L.. L. Gong, W. Liu, Q. Zhao, Y. Ren, X. Qiu, M. Zhong, and Y. Li, “Controllable light capsules employing modified Bessel-Gauss beams,” Sci. Rep. 6(1), 29001 (2016). [Crossref] [PubMed] Görlich, D.. F. Göttfert, T. Pleiner, J. Heine, V. Westphal, D. Görlich, S. J. Sahl, and S. W. Hell, “Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2125–2130 (2017). [Crossref] [PubMed] Göttfert, F.. F. Göttfert, T. Pleiner, J. Heine, V. Westphal, D. Görlich, S. J. Sahl, and S. W. Hell, “Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2125–2130 (2017). [Crossref] [PubMed] Gould, T. J.. B. R. Patton, D. Burke, D. Owald, T. J. Gould, J. Bewersdorf, and M. J. Booth, “Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics,” Opt. Express 24(8), 8862–8876 (2016). [Crossref] [PubMed] T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express 19(14), 13351–13357 (2011). [Crossref] [PubMed] Gratton, E.. L. Lanzanò, I. Coto Hernández, M. Castello, E. Gratton, A. Diaspro, and G. Vicidomini, “Encoding and decoding spatio-temporal information for super-resolution microscopy,” Nat. Commun. 6(1), 6701 (2015). [Crossref] [PubMed] Grotjohann, T.. T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012). [Crossref] [PubMed] Gu, Z.. Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012). [Crossref] [PubMed] Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt. 13(12), 125704 (2011). [Crossref] Guo, H.. X. Weng, X. Gao, H. Guo, and S. Zhuang, “Creation of tunable multiple 3D dark spots with cylindrical vector beam,” Appl. Opt. 53(11), 2470–2476 (2014). [Crossref] [PubMed] Gustafsson, M. G.. M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005). [Crossref] [PubMed] Gwosch, K. C.. F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017). [Crossref] [PubMed] Gynnå, A. H.. F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017). [Crossref] [PubMed] Ha, T.. K. Y. Han and T. Ha, “Dual-color three-dimensional STED microscopy with a single high-repetition-rate laser,” Opt. Lett. 40(11), 2653–2656 (2015). [Crossref] [PubMed] Han, K. Y.. K. Y. Han and T. Ha, “Dual-color three-dimensional STED microscopy with a single high-repetition-rate laser,” Opt. Lett. 40(11), 2653–2656 (2015). [Crossref] [PubMed] G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8(7), 571–573 (2011). [Crossref] [PubMed] E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009). [Crossref] Hao, X.. Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt. 13(12), 125704 (2011). [Crossref] Harke, B.. J. Heine, C. A. Wurm, J. Keller-Findeisen, A. Schönle, B. Harke, M. Reuss, F. R. Winter, and G. Donnert, “Three dimensional live-cell STED microscopy at increased depth using a water immersion objective,” Rev. Sci. Instrum. 89(5), 053701 (2018). [Crossref] [PubMed] J. Heine, M. Reuss, B. Harke, E. D’Este, S. J. Sahl, and S. W. Hell, “Adaptive-illumination STED nanoscopy,” Proc. Natl. Acad. Sci. U.S.A. 114(37), 9797–9802 (2017). [Crossref] [PubMed] B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett. 8(5), 1309–1313 (2008). [Crossref] [PubMed] B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008). [Crossref] [PubMed] Hegedus, Z.. C. Sheppard and Z. Hegedus, “Axial behavior of pupil-plane filters,” J. Opt. Soc. Am. A 5(5), 643–647 (1988). [Crossref] Hein, B.. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009). [Crossref] [PubMed] Heine, J.. J. Heine, C. A. Wurm, J. Keller-Findeisen, A. Schönle, B. Harke, M. Reuss, F. R. Winter, and G. Donnert, “Three dimensional live-cell STED microscopy at increased depth using a water immersion objective,” Rev. Sci. Instrum. 89(5), 053701 (2018). [Crossref] [PubMed] F. Göttfert, T. Pleiner, J. Heine, V. Westphal, D. Görlich, S. J. Sahl, and S. W. Hell, “Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2125–2130 (2017). [Crossref] [PubMed] J. Heine, M. Reuss, B. Harke, E. D’Este, S. J. Sahl, and S. W. Hell, “Adaptive-illumination STED nanoscopy,” Proc. Natl. Acad. Sci. U.S.A. 114(37), 9797–9802 (2017). [Crossref] [PubMed] Heintzmann, R.. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002). [Crossref] [PubMed] Hell, S. W.. F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017). [Crossref] [PubMed] J. Heine, M. Reuss, B. Harke, E. D’Este, S. J. Sahl, and S. W. Hell, “Adaptive-illumination STED nanoscopy,” Proc. Natl. Acad. Sci. U.S.A. 114(37), 9797–9802 (2017). [Crossref] [PubMed] F. Göttfert, T. Pleiner, J. Heine, V. Westphal, D. Görlich, S. J. Sahl, and S. W. Hell, “Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2125–2130 (2017). [Crossref] [PubMed] T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012). [Crossref] [PubMed] G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8(7), 571–573 (2011). [Crossref] [PubMed] M. Leutenegger, C. Eggeling, and S. W. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18(25), 26417–26429 (2010). [Crossref] [PubMed] C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009). [Crossref] [PubMed] E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009). [Crossref] B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett. 8(5), 1309–1313 (2008). [Crossref] [PubMed] A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008). [Crossref] [PubMed] B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008). [Crossref] [PubMed] J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007). [Crossref] [PubMed] V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005). [Crossref] [PubMed] L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94(17), 178104 (2005). [Crossref] [PubMed] M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005). [Crossref] [PubMed] M. Dyba and S. W. Hell, “Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002). [Crossref] [PubMed] T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000). [Crossref] [PubMed] S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [Crossref] [PubMed] Hess, H. F.. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [Crossref] [PubMed] Hess, S. T.. S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [Crossref] [PubMed] Hofmann, M.. M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005). [Crossref] [PubMed] Holyst, R.. K. Sozanski, E. Sisamakis, X. Zhang, and R. Holyst, “Quantitative fluorescence correlation spectroscopy in three-dimensional systems under stimulated emission depletion conditions,” Optica 4(8), 982–988 (2017). [Crossref] Hrelescu, C.. R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013). [Crossref] [PubMed] Huang, W.. Z. Zhang, H. Fan, H.-F. Xu, J. Qu, and W. Huang, “Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic,” J. Opt. 17(6), 065611 (2015). [Crossref] Irvine, S. E.. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009). [Crossref] Jacak, J.. R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013). [Crossref] [PubMed] Jahn, R.. A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008). [Crossref] [PubMed] Jakobs, S.. T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012). [Crossref] [PubMed] M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005). [Crossref] [PubMed] T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000). [Crossref] [PubMed] Jovin, T. M.. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002). [Crossref] [PubMed] Kaldewey, T.. T. Kaldewey, A. V. Kuhlmann, S. R. Valentin, A. Ludwig, A. D. Wieck, and R. J. Warburton, “Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch,” Nat. Photonics 12(2), 68–72 (2018). [Crossref] Kastrup, L.. A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008). [Crossref] [PubMed] L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94(17), 178104 (2005). [Crossref] [PubMed] Katzmann, J.. R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013). [Crossref] [PubMed] Keller, J.. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008). [Crossref] [PubMed] B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett. 8(5), 1309–1313 (2008). [Crossref] [PubMed] J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007). [Crossref] [PubMed] Keller-Findeisen, J.. J. Heine, C. A. Wurm, J. Keller-Findeisen, A. Schönle, B. Harke, M. Reuss, F. R. Winter, and G. Donnert, “Three dimensional live-cell STED microscopy at increased depth using a water immersion objective,” Rev. Sci. Instrum. 89(5), 053701 (2018). [Crossref] [PubMed] Klar, T. A.. R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013). [Crossref] [PubMed] T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000). [Crossref] [PubMed] Kozawa, Y.. Y. Kozawa and S. Sato, “Dark-spot formation by vector beams,” Opt. Lett. 33(20), 2326–2328 (2008). [Crossref] [PubMed] Kromann, E. B.. J. Antonello, E. B. Kromann, D. Burke, J. Bewersdorf, and M. J. Booth, “Coma aberrations in combined two- and three-dimensional STED nanoscopy,” Opt. Lett. 41(15), 3631–3634 (2016). [Crossref] [PubMed] Kuang, C.. Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012). [Crossref] [PubMed] Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt. 13(12), 125704 (2011). [Crossref] Kuhlmann, A. V.. T. Kaldewey, A. V. Kuhlmann, S. R. Valentin, A. Ludwig, A. D. Wieck, and R. J. Warburton, “Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch,” Nat. Photonics 12(2), 68–72 (2018). [Crossref] Lanzanò, L.. L. Lanzanò, I. Coto Hernández, M. Castello, E. Gratton, A. Diaspro, and G. Vicidomini, “Encoding and decoding spatio-temporal information for super-resolution microscopy,” Nat. Commun. 6(1), 6701 (2015). [Crossref] [PubMed] Leutenegger, M.. M. Leutenegger, C. Eggeling, and S. W. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18(25), 26417–26429 (2010). [Crossref] [PubMed] Li, R.. S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, “Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy,” Opt. Express 18(2), 1657–1666 (2010). [Crossref] [PubMed] Li, S.. Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012). [Crossref] [PubMed] Li, X.. B. Wang, J. Shi, T. Zhang, X. Xu, Y. Cao, and X. Li, “Improved lateral resolution with an annular vortex depletion beam in STED microscopy,” Opt. Lett. 42(23), 4885–4888 (2017). [Crossref] [PubMed] Li, Y.. L. Gong, W. Liu, Q. Zhao, Y. Ren, X. Qiu, M. Zhong, and Y. Li, “Controllable light capsules employing modified Bessel-Gauss beams,” Sci. Rep. 6(1), 29001 (2016). [Crossref] [PubMed] Lin, D.. L. Wang, B. Chen, W. Yan, Z. Yang, X. Peng, D. Lin, X. Weng, T. Ye, and J. Qu, “Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach,” Nanoscale 10(34), 16252–16260 (2018). [Crossref] [PubMed] Lindwasser, O. W.. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [Crossref] [PubMed] Lippincott-Schwartz, J.. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [Crossref] [PubMed] Liu, L.. S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, “Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy,” Opt. Express 18(2), 1657–1666 (2010). [Crossref] [PubMed] Liu, W.. L. Gong, W. Liu, Q. Zhao, Y. Ren, X. Qiu, M. Zhong, and Y. Li, “Controllable light capsules employing modified Bessel-Gauss beams,” Sci. Rep. 6(1), 29001 (2016). [Crossref] [PubMed] Liu, X.. Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012). [Crossref] [PubMed] Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt. 13(12), 125704 (2011). [Crossref] Ludwig, A.. T. Kaldewey, A. V. Kuhlmann, S. R. Valentin, A. Ludwig, A. D. Wieck, and R. J. Warburton, “Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch,” Nat. Photonics 12(2), 68–72 (2018). [Crossref] Mason, M. D.. S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [Crossref] [PubMed] Medda, R.. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009). [Crossref] [PubMed] Meyer, L.. A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008). [Crossref] [PubMed] Moneron, G.. G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8(7), 571–573 (2011). [Crossref] [PubMed] Munro, P.. P. Török and P. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004). [Crossref] [PubMed] Myers, J. R.. T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express 19(14), 13351–13357 (2011). [Crossref] [PubMed] Nienhaus, G. U.. P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11(3), 163–169 (2017). [Crossref] Nienhaus, K.. P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11(3), 163–169 (2017). [Crossref] Olenych, S.. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [Crossref] [PubMed] Owald, D.. B. R. Patton, D. Burke, D. Owald, T. J. Gould, J. Bewersdorf, and M. J. Booth, “Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics,” Opt. Express 24(8), 8862–8876 (2016). [Crossref] [PubMed] Padgett, M. J.. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011). [Crossref] J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25(4), 191–193 (2000). [Crossref] [PubMed] Patterson, G. H.. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [Crossref] [PubMed] Patton, B. R.. B. R. Patton, D. Burke, D. Owald, T. J. Gould, J. Bewersdorf, and M. J. Booth, “Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics,” Opt. Express 24(8), 8862–8876 (2016). [Crossref] [PubMed] Peng, X.. L. Wang, B. Chen, W. Yan, Z. Yang, X. Peng, D. Lin, X. Weng, T. Ye, and J. Qu, “Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach,” Nanoscale 10(34), 16252–16260 (2018). [Crossref] [PubMed] Pleiner, T.. F. Göttfert, T. Pleiner, J. Heine, V. Westphal, D. Görlich, S. J. Sahl, and S. W. Hell, “Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2125–2130 (2017). [Crossref] [PubMed] Polyakova, S.. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009). [Crossref] [PubMed] Prunsche, B.. P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11(3), 163–169 (2017). [Crossref] Punge, A.. A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008). [Crossref] [PubMed] Qiu, X.. L. Gong, W. Liu, Q. Zhao, Y. Ren, X. Qiu, M. Zhong, and Y. Li, “Controllable light capsules employing modified Bessel-Gauss beams,” Sci. Rep. 6(1), 29001 (2016). [Crossref] [PubMed] Qu, J.. L. Wang, B. Chen, W. Yan, Z. Yang, X. Peng, D. Lin, X. Weng, T. Ye, and J. Qu, “Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach,” Nanoscale 10(34), 16252–16260 (2018). [Crossref] [PubMed] Z. Zhang, H. Fan, H.-F. Xu, J. Qu, and W. Huang, “Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic,” J. Opt. 17(6), 065611 (2015). [Crossref] Ren, Y.. L. Gong, W. Liu, Q. Zhao, Y. Ren, X. Qiu, M. Zhong, and Y. Li, “Controllable light capsules employing modified Bessel-Gauss beams,” Sci. Rep. 6(1), 29001 (2016). [Crossref] [PubMed] Reuss, M.. J. Heine, C. A. Wurm, J. Keller-Findeisen, A. Schönle, B. Harke, M. Reuss, F. R. Winter, and G. Donnert, “Three dimensional live-cell STED microscopy at increased depth using a water immersion objective,” Rev. Sci. Instrum. 89(5), 053701 (2018). [Crossref] [PubMed] J. Heine, M. Reuss, B. Harke, E. D’Este, S. J. Sahl, and S. W. Hell, “Adaptive-illumination STED nanoscopy,” Proc. Natl. Acad. Sci. U.S.A. 114(37), 9797–9802 (2017). [Crossref] [PubMed] T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012). [Crossref] [PubMed] G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8(7), 571–573 (2011). [Crossref] [PubMed] Richards, B.. B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. 2. Structure of the Image Field in an Aplanatic System,” Proc R Soc Lon Ser-A253, 358–379 (1959). Ringemann, C.. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009). [Crossref] [PubMed] Rittweger, E.. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009). [Crossref] Rizzoli, S. O.. A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008). [Crossref] [PubMed] Rose, P.. C. Alpmann, M. Esseling, P. Rose, and C. Denz, “Holographic optical bottle beams,” Appl. Phys. Lett. 100(11), 111101 (2012). [Crossref] Rust, M. J.. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006). [Crossref] [PubMed] Sahl, S. J.. J. Heine, M. Reuss, B. Harke, E. D’Este, S. J. Sahl, and S. W. Hell, “Adaptive-illumination STED nanoscopy,” Proc. Natl. Acad. Sci. U.S.A. 114(37), 9797–9802 (2017). [Crossref] [PubMed] F. Göttfert, T. Pleiner, J. Heine, V. Westphal, D. Görlich, S. J. Sahl, and S. W. Hell, “Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2125–2130 (2017). [Crossref] [PubMed] Sandhoff, K.. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009). [Crossref] [PubMed] Sato, S.. Y. Kozawa and S. Sato, “Dark-spot formation by vector beams,” Opt. Lett. 33(20), 2326–2328 (2008). [Crossref] [PubMed] Schönle, A.. J. Heine, C. A. Wurm, J. Keller-Findeisen, A. Schönle, B. Harke, M. Reuss, F. R. Winter, and G. Donnert, “Three dimensional live-cell STED microscopy at increased depth using a water immersion objective,” Rev. Sci. Instrum. 89(5), 053701 (2018). [Crossref] [PubMed] C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009). [Crossref] [PubMed] A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008). [Crossref] [PubMed] B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008). [Crossref] [PubMed] J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007). [Crossref] [PubMed] Schwarzmann, G.. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009). [Crossref] [PubMed] Sheppard, C.. C. Sheppard and Z. Hegedus, “Axial behavior of pupil-plane filters,” J. Opt. Soc. Am. A 5(5), 643–647 (1988). [Crossref] Shi, J.. B. Wang, J. Shi, T. Zhang, X. Xu, Y. Cao, and X. Li, “Improved lateral resolution with an annular vortex depletion beam in STED microscopy,” Opt. Lett. 42(23), 4885–4888 (2017). [Crossref] [PubMed] Sisamakis, E.. K. Sozanski, E. Sisamakis, X. Zhang, and R. Holyst, “Quantitative fluorescence correlation spectroscopy in three-dimensional systems under stimulated emission depletion conditions,” Optica 4(8), 982–988 (2017). [Crossref] Sougrat, R.. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [Crossref] [PubMed] Sozanski, K.. K. Sozanski, E. Sisamakis, X. Zhang, and R. Holyst, “Quantitative fluorescence correlation spectroscopy in three-dimensional systems under stimulated emission depletion conditions,” Optica 4(8), 982–988 (2017). [Crossref] Stefani, F. D.. F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017). [Crossref] [PubMed] Ta, H.. G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8(7), 571–573 (2011). [Crossref] [PubMed] Testa, I.. T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012). [Crossref] [PubMed] Török, P.. P. Török and P. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004). [Crossref] [PubMed] Ullal, C. K.. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008). [Crossref] [PubMed] B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett. 8(5), 1309–1313 (2008). [Crossref] [PubMed] Valentin, S. R.. T. Kaldewey, A. V. Kuhlmann, S. R. Valentin, A. Ludwig, A. D. Wieck, and R. J. Warburton, “Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch,” Nat. Photonics 12(2), 68–72 (2018). [Crossref] Vicidomini, G.. L. Lanzanò, I. Coto Hernández, M. Castello, E. Gratton, A. Diaspro, and G. Vicidomini, “Encoding and decoding spatio-temporal information for super-resolution microscopy,” Nat. Commun. 6(1), 6701 (2015). [Crossref] [PubMed] G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8(7), 571–573 (2011). [Crossref] [PubMed] von Middendorff, C.. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009). [Crossref] [PubMed] Wang, B.. B. Wang, J. Shi, T. Zhang, X. Xu, Y. Cao, and X. Li, “Improved lateral resolution with an annular vortex depletion beam in STED microscopy,” Opt. Lett. 42(23), 4885–4888 (2017). [Crossref] [PubMed] Wang, L.. L. Wang, B. Chen, W. Yan, Z. Yang, X. Peng, D. Lin, X. Weng, T. Ye, and J. Qu, “Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach,” Nanoscale 10(34), 16252–16260 (2018). [Crossref] [PubMed] Warburton, R. J.. T. Kaldewey, A. V. Kuhlmann, S. R. Valentin, A. Ludwig, A. D. Wieck, and R. J. Warburton, “Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch,” Nat. Photonics 12(2), 68–72 (2018). [Crossref] Weng, X.. L. Wang, B. Chen, W. Yan, Z. Yang, X. Peng, D. Lin, X. Weng, T. Ye, and J. Qu, “Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach,” Nanoscale 10(34), 16252–16260 (2018). [Crossref] [PubMed] X. Weng, X. Gao, H. Guo, and S. Zhuang, “Creation of tunable multiple 3D dark spots with cylindrical vector beam,” Appl. Opt. 53(11), 2470–2476 (2014). [Crossref] [PubMed] Westphal, V.. F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017). [Crossref] [PubMed] F. Göttfert, T. Pleiner, J. Heine, V. Westphal, D. Görlich, S. J. Sahl, and S. W. Hell, “Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2125–2130 (2017). [Crossref] [PubMed] G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8(7), 571–573 (2011). [Crossref] [PubMed] B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008). [Crossref] [PubMed] V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005). [Crossref] [PubMed] Wichmann, J.. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [Crossref] [PubMed] Wieck, A. D.. T. Kaldewey, A. V. Kuhlmann, S. R. Valentin, A. Ludwig, A. D. Wieck, and R. J. Warburton, “Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch,” Nat. Photonics 12(2), 68–72 (2018). [Crossref] Wildanger, J. D.. A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008). [Crossref] [PubMed] Willig, K. I.. C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells--new frontiers in membrane and neurobiology,” J. Neurochem. 126(2), 203–212 (2013). [Crossref] [PubMed] Winter, F. R.. J. Heine, C. A. Wurm, J. Keller-Findeisen, A. Schönle, B. Harke, M. Reuss, F. R. Winter, and G. Donnert, “Three dimensional live-cell STED microscopy at increased depth using a water immersion objective,” Rev. Sci. Instrum. 89(5), 053701 (2018). [Crossref] [PubMed] Wolf, E.. B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. 2. Structure of the Image Field in an Aplanatic System,” Proc R Soc Lon Ser-A253, 358–379 (1959). Wollhofen, R.. R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013). [Crossref] [PubMed] Wurm, C. A.. J. Heine, C. A. Wurm, J. Keller-Findeisen, A. Schönle, B. Harke, M. Reuss, F. R. Winter, and G. Donnert, “Three dimensional live-cell STED microscopy at increased depth using a water immersion objective,” Rev. Sci. Instrum. 89(5), 053701 (2018). [Crossref] [PubMed] Xu, H.-F.. Z. Zhang, H. Fan, H.-F. Xu, J. Qu, and W. Huang, “Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic,” J. Opt. 17(6), 065611 (2015). [Crossref] Xu, X.. B. Wang, J. Shi, T. Zhang, X. Xu, Y. Cao, and X. Li, “Improved lateral resolution with an annular vortex depletion beam in STED microscopy,” Opt. Lett. 42(23), 4885–4888 (2017). [Crossref] [PubMed] Xu, Z.. S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, “Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy,” Opt. Express 18(2), 1657–1666 (2010). [Crossref] [PubMed] Xue, Y.. Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012). [Crossref] [PubMed] Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt. 13(12), 125704 (2011). [Crossref] Yan, W.. L. Wang, B. Chen, W. Yan, Z. Yang, X. Peng, D. Lin, X. Weng, T. Ye, and J. Qu, “Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach,” Nanoscale 10(34), 16252–16260 (2018). [Crossref] [PubMed] Yang, Z.. L. Wang, B. Chen, W. Yan, Z. Yang, X. Peng, D. Lin, X. Weng, T. Ye, and J. Qu, “Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach,” Nanoscale 10(34), 16252–16260 (2018). [Crossref] [PubMed] Yao, A. M.. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011). [Crossref] Ye, T.. L. Wang, B. Chen, W. Yan, Z. Yang, X. Peng, D. Lin, X. Weng, T. Ye, and J. Qu, “Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach,” Nanoscale 10(34), 16252–16260 (2018). [Crossref] [PubMed] Zhang, T.. B. Wang, J. Shi, T. Zhang, X. Xu, Y. Cao, and X. Li, “Improved lateral resolution with an annular vortex depletion beam in STED microscopy,” Opt. Lett. 42(23), 4885–4888 (2017). [Crossref] [PubMed] Zhang, X.. K. Sozanski, E. Sisamakis, X. Zhang, and R. Holyst, “Quantitative fluorescence correlation spectroscopy in three-dimensional systems under stimulated emission depletion conditions,” Optica 4(8), 982–988 (2017). [Crossref] Zhang, Y.. Y. Zhang, “Generation of three-dimensional dark spots with a perfect light shell with a radially polarized Laguerre-Gaussian beam,” Appl. Opt. 49(32), 6217–6223 (2010). [Crossref] [PubMed] Zhang, Z.. Z. Zhang, H. Fan, H.-F. Xu, J. Qu, and W. Huang, “Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic,” J. Opt. 17(6), 065611 (2015). [Crossref] Zhao, Q.. L. Gong, W. Liu, Q. Zhao, Y. Ren, X. Qiu, M. Zhong, and Y. Li, “Controllable light capsules employing modified Bessel-Gauss beams,” Sci. Rep. 6(1), 29001 (2016). [Crossref] [PubMed] Zhong, M.. L. Gong, W. Liu, Q. Zhao, Y. Ren, X. Qiu, M. Zhong, and Y. Li, “Controllable light capsules employing modified Bessel-Gauss beams,” Sci. Rep. 6(1), 29001 (2016). [Crossref] [PubMed] Zhou, L.. P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11(3), 163–169 (2017). [Crossref] Zhuang, S.. X. Weng, X. Gao, H. Guo, and S. Zhuang, “Creation of tunable multiple 3D dark spots with cylindrical vector beam,” Appl. Opt. 53(11), 2470–2476 (2014). [Crossref] [PubMed] Zhuang, X.. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006). [Crossref] [PubMed] Adv. Opt. Photonics (1). A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011). [Crossref] Appl. Opt. (2). Y. Zhang, “Generation of three-dimensional dark spots with a perfect light shell with a radially polarized Laguerre-Gaussian beam,” Appl. Opt. 49(32), 6217–6223 (2010). [Crossref] [PubMed] X. Weng, X. Gao, H. Guo, and S. Zhuang, “Creation of tunable multiple 3D dark spots with cylindrical vector beam,” Appl. Opt. 53(11), 2470–2476 (2014). [Crossref] [PubMed] Appl. Phys. Lett. (1). C. Alpmann, M. Esseling, P. Rose, and C. Denz, “Holographic optical bottle beams,” Appl. Phys. Lett. 100(11), 111101 (2012). [Crossref] Biophys. J. (1). S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [Crossref] [PubMed] eLife (1). T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling, S. W. Hell, and S. Jakobs, “rsEGFP2 enables fast RESOLFT nanoscopy of living cells,” eLife 1, e00248 (2012). [Crossref] [PubMed] J. Neurochem. (1). C. Eggeling, K. I. Willig, and F. J. Barrantes, “STED microscopy of living cells--new frontiers in membrane and neurobiology,” J. Neurochem. 126(2), 203–212 (2013). [Crossref] [PubMed] J. Opt. (2). Y. Xue, C. Kuang, X. Hao, Z. Gu, and X. Liu, “A method for generating a three-dimensional dark spot using a radially polarized beam,” J. Opt. 13(12), 125704 (2011). [Crossref] Z. Zhang, H. Fan, H.-F. Xu, J. Qu, and W. Huang, “Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic,” J. Opt. 17(6), 065611 (2015). [Crossref] J. Opt. Soc. Am. A (3). W. Condell, “Fraunhofer diffraction from a circular annular aperture with helical phase factor,” J. Opt. Soc. Am. A 2(2), 206–208 (1985). [Crossref] C. Sheppard and Z. Hegedus, “Axial behavior of pupil-plane filters,” J. Opt. Soc. Am. A 5(5), 643–647 (1988). [Crossref] R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy--a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19(8), 1599–1609 (2002). [Crossref] [PubMed] Microsc. Res. Tech. (1). A. Punge, S. O. Rizzoli, R. Jahn, J. D. Wildanger, L. Meyer, A. Schönle, L. Kastrup, and S. W. Hell, “3D reconstruction of high-resolution STED microscope images,” Microsc. Res. Tech. 71(9), 644–650 (2008). [Crossref] [PubMed] Nano Lett. (1). B. Harke, C. K. Ullal, J. Keller, and S. W. Hell, “Three-dimensional nanoscopy of colloidal crystals,” Nano Lett. 8(5), 1309–1313 (2008). [Crossref] [PubMed] Nanoscale (1). L. Wang, B. Chen, W. Yan, Z. Yang, X. Peng, D. Lin, X. Weng, T. Ye, and J. Qu, “Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach,” Nanoscale 10(34), 16252–16260 (2018). [Crossref] [PubMed] Nat. Commun. (1). L. Lanzanò, I. Coto Hernández, M. Castello, E. Gratton, A. Diaspro, and G. Vicidomini, “Encoding and decoding spatio-temporal information for super-resolution microscopy,” Nat. Commun. 6(1), 6701 (2015). [Crossref] [PubMed] Nat. Methods (2). G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, “Sharper low-power STED nanoscopy by time gating,” Nat. Methods 8(7), 571–573 (2011). [Crossref] [PubMed] M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006). [Crossref] [PubMed] Nat. Photonics (3). T. Kaldewey, A. V. Kuhlmann, S. R. Valentin, A. Ludwig, A. D. Wieck, and R. J. Warburton, “Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch,” Nat. Photonics 12(2), 68–72 (2018). [Crossref] E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009). [Crossref] P. Gao, B. Prunsche, L. Zhou, K. Nienhaus, and G. U. Nienhaus, “Background suppression in fluorescence nanoscopy with stimulated emission double depletion,” Nat. Photonics 11(3), 163–169 (2017). [Crossref] Nature (1). C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457(7233), 1159–1162 (2009). [Crossref] [PubMed] Opt. Commun. (1). J. Antonello, D. Burke, and M. J. Booth, “Aberrations in stimulated emission depletion (STED) microscopy,” Opt. Commun. 404, 203–209 (2017). [Crossref] [PubMed] Opt. Express (9). R. Wollhofen, J. Katzmann, C. Hrelescu, J. Jacak, and T. A. Klar, “120 nm resolution and 55 nm structure size in STED-lithography,” Opt. Express 21(9), 10831–10840 (2013). [Crossref] [PubMed] T. J. Gould, J. R. Myers, and J. Bewersdorf, “Total internal reflection STED microscopy,” Opt. Express 19(14), 13351–13357 (2011). [Crossref] [PubMed] B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16(6), 4154–4162 (2008). [Crossref] [PubMed] J. Keller, A. Schönle, and S. W. Hell, “Efficient fluorescence inhibition patterns for RESOLFT microscopy,” Opt. Express 15(6), 3361–3371 (2007). [Crossref] [PubMed] P. Török and P. Munro, “The use of Gauss-Laguerre vector beams in STED microscopy,” Opt. Express 12(15), 3605–3617 (2004). [Crossref] [PubMed] S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, “Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy,” Opt. Express 18(2), 1657–1666 (2010). [Crossref] [PubMed] B. R. Patton, D. Burke, D. Owald, T. J. Gould, J. Bewersdorf, and M. J. Booth, “Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics,” Opt. Express 24(8), 8862–8876 (2016). [Crossref] [PubMed] M. Leutenegger, C. Eggeling, and S. W. Hell, “Analytical description of STED microscopy performance,” Opt. Express 18(25), 26417–26429 (2010). [Crossref] [PubMed] Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012). [Crossref] [PubMed] Opt. Lett. (6). K. Y. Han and T. Ha, “Dual-color three-dimensional STED microscopy with a single high-repetition-rate laser,” Opt. Lett. 40(11), 2653–2656 (2015). [Crossref] [PubMed] J. Antonello, E. B. Kromann, D. Burke, J. Bewersdorf, and M. J. Booth, “Coma aberrations in combined two- and three-dimensional STED nanoscopy,” Opt. Lett. 41(15), 3631–3634 (2016). [Crossref] [PubMed] B. Wang, J. Shi, T. Zhang, X. Xu, Y. Cao, and X. Li, “Improved lateral resolution with an annular vortex depletion beam in STED microscopy,” Opt. Lett. 42(23), 4885–4888 (2017). [Crossref] [PubMed] Y. Kozawa and S. Sato, “Dark-spot formation by vector beams,” Opt. Lett. 33(20), 2326–2328 (2008). [Crossref] [PubMed] J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25(4), 191–193 (2000). [Crossref] [PubMed] S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [Crossref] [PubMed] Optica (1). K. Sozanski, E. Sisamakis, X. Zhang, and R. Holyst, “Quantitative fluorescence correlation spectroscopy in three-dimensional systems under stimulated emission depletion conditions,” Optica 4(8), 982–988 (2017). [Crossref] Phys. Rev. Lett. (3). V. Westphal and S. W. Hell, “Nanoscale resolution in the focal plane of an optical microscope,” Phys. Rev. Lett. 94(14), 143903 (2005). [Crossref] [PubMed] L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volumes,” Phys. Rev. Lett. 94(17), 178104 (2005). [Crossref] [PubMed] M. Dyba and S. W. Hell, “Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution,” Phys. Rev. Lett. 88(16), 163901 (2002). [Crossref] [PubMed] Proc. Natl. Acad. Sci. U.S.A. (5). T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000). [Crossref] [PubMed] M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005). [Crossref] [PubMed] M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(49), 17565–17569 (2005). [Crossref] [PubMed] J. Heine, M. Reuss, B. Harke, E. D’Este, S. J. Sahl, and S. W. Hell, “Adaptive-illumination STED nanoscopy,” Proc. Natl. Acad. Sci. U.S.A. 114(37), 9797–9802 (2017). [Crossref] [PubMed] F. Göttfert, T. Pleiner, J. Heine, V. Westphal, D. Görlich, S. J. Sahl, and S. W. Hell, “Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent,” Proc. Natl. Acad. Sci. U.S.A. 114(9), 2125–2130 (2017). [Crossref] [PubMed] Rev. Sci. Instrum. (1). J. Heine, C. A. Wurm, J. Keller-Findeisen, A. Schönle, B. Harke, M. Reuss, F. R. Winter, and G. Donnert, “Three dimensional live-cell STED microscopy at increased depth using a water immersion objective,” Rev. Sci. Instrum. 89(5), 053701 (2018). [Crossref] [PubMed] Sci. Rep. (1). L. Gong, W. Liu, Q. Zhao, Y. Ren, X. Qiu, M. Zhong, and Y. Li, “Controllable light capsules employing modified Bessel-Gauss beams,” Sci. Rep. 6(1), 29001 (2016). [Crossref] [PubMed] Science (2). E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [Crossref] [PubMed] F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynnå, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, “Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes,” Science 355(6325), 606–612 (2017). [Crossref] [PubMed] Other (4). J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005). M. Abramowitz and I. A. Stegun, “Handbook of mathematical function: with formulas, graphs and mathematical tables,” in Handbook of mathematical function: with formulas, graphs and mathematical tables (Dover Publications, 1965). M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013). B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. 2. Structure of the Image Field in an Aplanatic System,” Proc R Soc Lon Ser-A253, 358–379 (1959). .

原始网站图片
 增加监测目标对象/主题,请 登录 直接在原文中划词!