Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug delivery to the central nervous system

Abstract

Despite the rising global incidence of central nervous system (CNS) disorders, CNS drug development remains challenging, with high costs, long pathways to clinical use and high failure rates. The CNS is highly protected by physiological barriers, in particular, the blood–brain barrier and the blood–cerebrospinal fluid barrier, which limit access of most drugs. Biomaterials can be designed to bypass or traverse these barriers, enabling the controlled delivery of drugs into the CNS. In this Review, we first examine the effects of normal and diseased CNS physiology on drug delivery to the brain and spinal cord. We then discuss CNS drug delivery designs and materials that are administered systemically, directly to the CNS, intranasally or peripherally through intramuscular injections. Finally, we highlight important challenges and opportunities for materials design for drug delivery to the CNS and the anticipated clinical impact of CNS drug delivery.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Physiological and pathological changes of the central nervous system in cancer and traumatic brain injury.
Fig. 2: Physiological and pathological changes of the central nervous system in chronic neurodegeneration and stroke.
Fig. 3: Different human diseases present different central nervous system drug delivery challenges.
Fig. 4: Drug delivery across the blood–brain barrier.
Fig. 5: Local central nervous system drug delivery routes.

Similar content being viewed by others

References

  1. Wittchen, H.-U. et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 21, 655–679 (2011).

    CAS  Google Scholar 

  2. Lindsley, C. W. 2013 Statistics for global prescription medications: CNS therapeutics maintain a leading position among small molecule therapeutics. ACS Chem. Neurosci. 5, 250–251 (2014).

    CAS  Google Scholar 

  3. Helmbrecht, H., Joseph, A., McKenna, M., Zhang, M. & Nance, E. Governing transport principles for nanotherapeutic application in the brain. Curr. Opin. Chem. Eng. 30, 112–119 (2020).

    Google Scholar 

  4. GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 439–458 (2019).

    Google Scholar 

  5. Zlokovic, B. V. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci. 28, 202–208 (2005).

    CAS  Google Scholar 

  6. Armulik, A. et al. Pericytes regulate the blood–brain barrier. Nature 468, 557–561 (2010).

    CAS  Google Scholar 

  7. Bell, R. D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010).

    CAS  Google Scholar 

  8. Sweeney, M. D., Ayyadurai, S. & Zlokovic, B. V. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci. 19, 771–783 (2016).

    CAS  Google Scholar 

  9. Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R. & Begley, D. J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010).

    CAS  Google Scholar 

  10. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

    CAS  Google Scholar 

  11. Pardridge, W. M. Drug transport across the blood–brain barrier. J. Cereb. Blood Flow Metab. 32, 1959–1972 (2012).

    CAS  Google Scholar 

  12. Groothuis, D. R. The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro-Oncology 2, 45–59 (2000).

    CAS  Google Scholar 

  13. Oldendorf, W. H. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am. J. Physiol. 221, 1629–1639 (1971).

    CAS  Google Scholar 

  14. Banks, W. A. Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology 153, 4111–4119 (2012).

    CAS  Google Scholar 

  15. Pardridge, W. M. CSF, blood-brain barrier, and brain drug delivery. Expert Opin. Drug Deliv. 13, 963–975 (2016).

    CAS  Google Scholar 

  16. Pardridge, W. M. Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS 8, 7 (2011).

    Google Scholar 

  17. Yamada, K. et al. Basic fibroblast growth factor prevents thalamic degeneration after cortical infarction. J. Cereb. Blood Flow Metab. 11, 472–478 (1991).

    CAS  Google Scholar 

  18. Day-Lollini, P. A., Stewart, G. R., Taylor, M. J., Johnson, R. M. & Chellman, G. J. Hyperplastic changes within the leptomeninges of the rat and monkey in response to chronic intracerebroventricular infusion of nerve growth factor. Exp. Neurol. 145, 24–37 (1997).

    CAS  Google Scholar 

  19. Cserr, H. F., Cooper, D. N., Suri, P. K. & Patlak, C. S. Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am. J. Physiol. 240, F319–F328 (1981).

    CAS  Google Scholar 

  20. Szentistvanyi, I., Patlak, C. S., Ellis, R. A. & Cserr, H. F. Drainage of interstitial fluid from different regions of rat brain. Am. J. Physiol. 246, F835–F844 (1984).

    CAS  Google Scholar 

  21. Henrich-Noack, P. et al. The blood–brain barrier and beyond: Nano-based neuropharmacology and the role of extracellular matrix. Nanomedicine 17, 359–379 (2019).

    CAS  Google Scholar 

  22. Wolak, D. J. & Thorne, R. G. Diffusion of macromolecules in the brain: implications for drug delivery. Mol. Pharm. 10, 1492–1504 (2013).

    CAS  Google Scholar 

  23. Sykova, E. & Nicholson, C. Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340 (2008).

    CAS  Google Scholar 

  24. Nance, E. A. et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med. 4, 149ra119 (2012).

    Google Scholar 

  25. Patel, T., Zhou, J., Piepmeier, J. M. & Saltzman, W. M. Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev. 64, 701–705 (2012).

    CAS  Google Scholar 

  26. Curtis, C., Toghani, D., Wong, B. & Nance, E. Colloidal stability as a determinant of nanoparticle behavior in the brain. Colloids Surf. B Biointerfaces 170, 673–682 (2018).

    CAS  Google Scholar 

  27. Morrison, P. F. & Dedrick, R. L. Transport of cisplatin in rat brain following microinfusion: an analysis. J. Pharm. Sci. 75, 120–128 (1986).

    CAS  Google Scholar 

  28. Wen, P. Y. & Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 359, 492–507 (2008).

    CAS  Google Scholar 

  29. Nduom, E. K., Yang, C., Merrill, M. J., Zhuang, Z. & Lonser, R. R. Characterization of the blood-brain barrier of metastatic and primary malignant neoplasms. J. Neurosurg. 119, 427–433 (2013).

    Google Scholar 

  30. Jain, R. K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205–2218 (2013).

    CAS  Google Scholar 

  31. Wiranowska, M. & Rojiani, M. V. in Glioma – Exploring Its Biology and Practical Relevance Ch. 12 (ed. Ghosh, A.) (IntechOpen, 2011).

  32. Yao, Q., Kou, L., Tu, Y. & Zhu, L. MMP-responsive ‘smart’ drug delivery and tumor targeting. Trends Pharmacol. Sci. 39, 766–781 (2018).

    CAS  Google Scholar 

  33. National Spinal Cord Injury Statistical Center (NSCISC). Spinal Cord Injury: Facts and Figures at a Glance (University of Alabama at Birmingham, 2021).

  34. Lee, S. et al. A novel antagonist of p75NTR reduces peripheral expansion and CNS trafficking of pro-inflammatory monocytes and spares function after traumatic brain injury. J. Neuroinflammation 13, 88 (2016).

    CAS  Google Scholar 

  35. Centers for Disease Control and Prevention (CDC). Report to Congress on Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation (National Center for Injury Prevention and Control; Division of Unintentional Injury Prevention, 2015).

  36. Hulsebosch, C. E. Recent advances in pathophysiology and treatment of spinal cord injury. Adv. Physiol. Educ. 26, 238–255 (2002).

    Google Scholar 

  37. Beattie, M. S. Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol. Med. 10, 580–583 (2004).

    CAS  Google Scholar 

  38. Wang, C. X., Nuttin, B., Heremans, H., Dom, R. & Gybels, J. Production of tumor necrosis factor in spinal cord following traumatic injury in rats. J. Neuroimmunol. 69, 151–156 (1996).

    CAS  Google Scholar 

  39. Ramlackhansingh, A. F. et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann. Neurol. 70, 374–383 (2011).

    Google Scholar 

  40. Kandell, R. M., Waggoner, L. E. & Kwon,E. J. Nanomedicine for acute brain injuries: insight from decades of cancer nanomedicine. Mol. Pharmaceutics https://doi.org/10.1021/acs.molpharmaceut.0c00287 (2020).

    Article  Google Scholar 

  41. Kudryashev, J. A. et al. An activity-based nanosensor for traumatic brain injury. ACS Sens. 5, 686–692 (2020).

    CAS  Google Scholar 

  42. Delbary-Gossart, S. et al. A novel inhibitor of p75-neurotrophin receptor improves functional outcomes in two models of traumatic brain injury. Brain 139, 1762–1782 (2016).

    Google Scholar 

  43. Hurlbert, R. J. et al. Pharmacological therapy for acute spinal cord injury. Neurosurgery 72, 93–105 (2013).

    Google Scholar 

  44. Bowers, C. A., Kundu, B., Rosenbluth, J. & Hawryluk, G. W. Patients with spinal cord injuries favor administration of methylprednisolone. PLoS ONE 11, e0145991 (2016).

    Google Scholar 

  45. Fehlings, M. G. et al. A clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the use of methylprednisolone sodium succinate. Glob. Spine J. 7, 203S–211S (2017).

    Google Scholar 

  46. Hurlbert, R. J. & Hamilton, M. G. Methylprednisolone for acute spinal cord injury: 5-year practice reversal. Can. J. Neurol. Sci. 35, 41–45 (2008).

    Google Scholar 

  47. Angeli, C. A. et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. N. Engl. J. Med. 379, 1244–1250 (2018).

    Google Scholar 

  48. Gill, M. L. et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat. Med. 24, 1677–1682 (2018).

    CAS  Google Scholar 

  49. Profaci, C. P., Munji, R. N., Pulido, R. S. & Daneman, R. The blood–brain barrier in health and disease: Important unanswered questions. J. Exp. Med. 217, e20190062 (2020).

    Google Scholar 

  50. Yang, A. C. et al. Physiological blood–brain transport is impaired with age by a shift in transcytosis. Nature 583, 425–430 (2020).

    CAS  Google Scholar 

  51. Montagne, A. et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85, 296–302 (2015).

    CAS  Google Scholar 

  52. Khandaker, G. M. et al. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2, 258–270 (2015).

    Google Scholar 

  53. Iturria-Medina, Y. et al. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat. Commun. 7, 11934 (2016).

    CAS  Google Scholar 

  54. Winkler, E. A. et al. Blood–spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc. Natl Acad. Sci. USA 111, E1035–E1042 (2014).

    CAS  Google Scholar 

  55. Yamazaki, Y. et al. Selective loss of cortical endothelial tight junction proteins during Alzheimer’s disease progression. Brain 142, 1077–1092 (2019).

    Google Scholar 

  56. Yamada, M. & Hamaguchi, T. The sulfation code for propagation of neurodegeneration. J. Biol. Chem. 293, 10841–10842 (2018).

    CAS  Google Scholar 

  57. Blanchard, J. W. et al. Reconstruction of the human blood–brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes. Nat. Med. 26, 952–963 (2020).

    CAS  Google Scholar 

  58. Kisler, K. et al. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat. Neurosci. 20, 406–416 (2017).

    CAS  Google Scholar 

  59. Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).

    CAS  Google Scholar 

  60. Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 12, 723–738 (2011).

    CAS  Google Scholar 

  61. Winkler, E. A., Sengillo, J. D., Bell, R. D., Wang, J. & Zlokovic, B. V. Blood–spinal cord barrier pericyte reductions contribute to increased capillary permeability. J. Cereb. Blood Flow Metab. 32, 1841–1852 (2012).

    CAS  Google Scholar 

  62. Nikolakopoulou, A. M. et al. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nat. Neurosci. 22, 1089–1098 (2019).

    CAS  Google Scholar 

  63. Campbell, B. C. V. & Khatri, P. Stroke. Lancet 396, 129–142 (2020).

    Google Scholar 

  64. Wardlaw, J. M. et al. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. Lancet 379, 2364–2372 (2012).

    CAS  Google Scholar 

  65. Davis, S. M. & Donnan, G. A. 4.5 hours: the new time window for tissue plasminogen activator in stroke. Stroke 40, 2266–2267 (2009).

    Google Scholar 

  66. Berkhemer, O. A. et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 372, 11–20 (2015).

    Google Scholar 

  67. Campbell, B. C. et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 372, 1009–1018 (2015).

    CAS  Google Scholar 

  68. Goyal, M. et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 372, 1019–1030 (2015).

    CAS  Google Scholar 

  69. Saver, J. L. et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N. Engl. J. Med. 372, 2285–2295 (2015).

    CAS  Google Scholar 

  70. Bracard, S. et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. Lancet Neurol. 15, 1138–1147 (2016).

    CAS  Google Scholar 

  71. Nogueira, R. G. et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 378, 11–21 (2018).

    Google Scholar 

  72. Hettiaratchi, M. H. et al. Local delivery of stabilized chondroitinase ABC degrades chondroitin sulfate proteoglycans in stroke-injured rat brains. J. Control. Release 297, 14–25 (2019).

    CAS  Google Scholar 

  73. George, P. M. et al. Engineered stem cell mimics to enhance stroke recovery. Biomaterials 178, 63–72 (2018).

    CAS  Google Scholar 

  74. Bolan, F., Louca, I., Heal, C. & Cunningham, C. J. The potential of biomaterial-based approaches as therapies for ischemic stroke: a systematic review and meta-analysis of pre-clinical studies. Front. Neurol. 10, 924 (2019).

    Google Scholar 

  75. Saraiva, C. et al. MicroRNA-124-loaded nanoparticles increase survival and neuronal differentiation of neural stem cells in vitro but do not contribute to stroke outcome in vivo. PLoS ONE 13, e0193609 (2018).

    Google Scholar 

  76. Chamorro, A., Dirnagl, U., Urra, X. & Planas, A. M. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 15, 869–881 (2016).

    CAS  Google Scholar 

  77. Pardridge, W. M. Why is the global CNS pharmaceutical market so under-penetrated? Drug Discov. Today 7, 5–7 (2002).

    Google Scholar 

  78. Furtado, D. et al. Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases. Adv. Mater. 30, 1801362 (2018).

    Google Scholar 

  79. Tang, W. et al. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev. 48, 2967–3014 (2019).

    CAS  Google Scholar 

  80. Johnsen, K. B., Burkhart, A., Thomsen, L. B., Andresen, T. L. & Moos, T. Targeting the transferrin receptor for brain drug delivery. Prog. Neurobiol. 181, 101665 (2019).

    CAS  Google Scholar 

  81. van Rooy, I., Mastrobattista, E., Storm, G., Hennink, W. E. & Schiffelers, R. M. Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. J. Control. Release 150, 30–36 (2011).

    Google Scholar 

  82. Israel, L. L. et al. A combination of tri-leucine and angiopep-2 drives a polyanionic polymalic acid nanodrug platform across the blood–brain barrier. ACS Nano 13, 1253–1271 (2019).

    CAS  Google Scholar 

  83. Yu, Y. J. et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci. Transl. Med. 3, 84ra44 (2011).

    Google Scholar 

  84. Couch, J. A. et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci. Transl. Med. 5, 183ra157 (2013).

    Google Scholar 

  85. Bien-Ly, N. et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J. Exp. Med. 211, 233–244 (2014).

    CAS  Google Scholar 

  86. Lesley, J., Schulte, R. & Woods, J. Modulation of transferrin receptor expression and function by anti-transferrin receptor antibodies and antibody fragments. Exp. Cell Res. 182, 215–233 (1989).

    CAS  Google Scholar 

  87. Wiley, D. T., Webster, P., Gale, A. & Davis, M. E. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc. Natl Acad. Sci. USA 110, 8662–8667 (2013).

    CAS  Google Scholar 

  88. Johnsen, K. B. et al. Antibody affinity and valency impact brain uptake of transferrin receptor-targeted gold nanoparticles. Theranostics 8, 3416–3436 (2018).

    CAS  Google Scholar 

  89. Clark, A. J. & Davis, M. E. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc. Natl Acad. Sci. USA 112, 12486–12491 (2015).

    CAS  Google Scholar 

  90. Wyatt, E. A. & Davis, M. E. Method of establishing breast cancer brain metastases affects brain uptake and efficacy of targeted, therapeutic nanoparticles. Bioeng. Transl. Med. 4, 30–37 (2019).

    CAS  Google Scholar 

  91. Cai, L. et al. Endo/lysosome-escapable delivery depot for improving BBB transcytosis and neuron targeted therapy of Alzheimer’s disease. Adv. Funct. Mater. 30, 1909999 (2020).

    CAS  Google Scholar 

  92. Li, S.-D. & Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 5, 496–504 (2008).

    CAS  Google Scholar 

  93. Betzer, O. et al. The effect of nanoparticle size on the ability to cross the blood–brain barrier: an in vivo study. Nanomedicine 12, 1533–1546 (2017).

    CAS  Google Scholar 

  94. Nowak, M., Brown, T. D., Graham, A., Helgeson, M. E. & Mitragotri, S. Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow. Bioeng. Transl. Med. 5, e10153 (2020).

    CAS  Google Scholar 

  95. Moos, T. & Morgan, E. H. Restricted transport of anti-transferrin receptor antibody (OX26) through the blood–brain barrier in the rat. J. Neurochem. 79, 119–129 (2001).

    CAS  Google Scholar 

  96. Johnsen, K. B. et al. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci. Rep. 7, 10396 (2017).

    Google Scholar 

  97. Marcos-Contreras, O. A. et al. Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood–brain barrier. Proc. Natl Acad. Sci. USA 117, 3405–3414 (2020).

    CAS  Google Scholar 

  98. Marcos-Contreras, O. A. et al. Combining vascular targeting and the local first pass provides 100-fold higher uptake of ICAM-1-targeted vs untargeted nanocarriers in the inflamed brain. J. Control. Release 301, 54–61 (2019).

    CAS  Google Scholar 

  99. Gonzalez-Carter, D. et al. Targeting nanoparticles to the brain by exploiting the blood–brain barrier impermeability to selectively label the brain endothelium. Proc. Natl Acad. Sci. USA 117, 19141–19150 (2020).

    CAS  Google Scholar 

  100. Stein, S. C. et al. Erythrocyte-bound tissue plasminogen activator is neuroprotective in experimental traumatic brain injury. J. Neurotrauma 26, 1585–1592 (2009).

    Google Scholar 

  101. Brenner, J. S. et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat. Commun. 9, 2684 (2018).

    Google Scholar 

  102. Klyachko, N. L. et al. Macrophages with cellular backpacks for targeted drug delivery to the brain. Biomaterials 140, 79–87 (2017).

    CAS  Google Scholar 

  103. Hou, J. et al. Accessing neuroinflammation sites: Monocyte/neutrophil-mediated drug delivery for cerebral ischemia. Sci. Adv. 5, eaau8301 (2019).

    CAS  Google Scholar 

  104. Zheng, M., Huang, M., Ma, X., Chen, H. & Gao, X. Harnessing exosomes for the development of brain drug delivery systems. Bioconjug. Chem. 30, 994–1005 (2019).

    CAS  Google Scholar 

  105. Yuan, D. et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 142, 1–12 (2017).

    CAS  Google Scholar 

  106. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    CAS  Google Scholar 

  107. Tian, T. et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 150, 137–149 (2018).

    CAS  Google Scholar 

  108. Haney, M. J. et al. TPP1 delivery to lysosomes with extracellular vesicles and their enhanced brain distribution in the animal model of batten disease. Adv. Healthc. Mater. 8, 1801271 (2019).

    Google Scholar 

  109. Rapoport, S. I., Hori, M. & Klatzo, I. Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am. J. Physiol. 223, 323–331 (1972).

    CAS  Google Scholar 

  110. Chian, R. J. et al. IGF-1:tetanus toxin fragment C fusion protein improves delivery of IGF-1 to spinal cord but fails to prolong survival of ALS mice. Brain Res. 1287, 1–19 (2009).

    CAS  Google Scholar 

  111. Chu, C. et al. Optimization of osmotic blood-brain barrier opening to enable intravital microscopy studies on drug delivery in mouse cortex. J. Control. Release 317, 312–321 (2020).

    CAS  Google Scholar 

  112. Karakatsani, M. E. et al. Amelioration of the nigrostriatal pathway facilitated by ultrasound-mediated neurotrophic delivery in early Parkinson’s disease. J. Control. Release 303, 289–301 (2019).

    CAS  Google Scholar 

  113. Rich, M. C. et al. Focused ultrasound blood brain barrier opening mediated delivery of MRI-visible albumin nanoclusters to the rat brain for localized drug delivery with temporal control. J. Control. Release 324, 172–180 (2020).

    CAS  Google Scholar 

  114. Thévenot, E. et al. Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound. Hum. Gene Ther. 23, 1144–1155 (2012).

    Google Scholar 

  115. Zhou, Y., Yang, K., Cui, J., Ye, J. & Deng, C. Controlled permeation of cell membrane by single bubble acoustic cavitation. J. Control. Release 157, 103–111 (2012).

    CAS  Google Scholar 

  116. Lipsman, N. et al. Blood–brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat. Commun. 9, 2336 (2018).

    Google Scholar 

  117. Carpentier, A. et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci. Transl. Med. 8, 343re2 (2016).

    Google Scholar 

  118. Langer, R. & Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797–800 (1976).

    CAS  Google Scholar 

  119. Wang, P. P., Frazier, J. & Brem, H. Local drug delivery to the brain. Adv. Drug Deliv. Rev. 54, 987–1013 (2002).

    CAS  Google Scholar 

  120. Walter, K. A. et al. Interstitial taxol delivered from a biodegradable polymer implant against experimental malignant glioma. Cancer Res. 54, 2207–2212 (1994).

    CAS  Google Scholar 

  121. Sampath, P. et al. Camptothecin analogs in malignant gliomas: comparative analysis and characterization. J. Neurosurg. 98, 570–577 (2003).

    CAS  Google Scholar 

  122. Brem, S. et al. Local delivery of temozolomide by biodegradable polymers is superior to oral administration in a rodent glioma model. Cancer Chemother. Pharmacol. 60, 643–650 (2007).

    CAS  Google Scholar 

  123. Grossman, S. A. et al. The intracerebral distribution of BCNU delivered by surgically implanted biodegradable polymers. J. Neurosurg. 76, 640–647 (1992).

    CAS  Google Scholar 

  124. Perry, J., Chambers, A., Spithoff, K. & Laperriere, N. Gliadel wafers in the treatment of malignant glioma: a systematic review. Curr. Oncol. 14, 189–194 (2007).

    CAS  Google Scholar 

  125. Fung, L. K., Shin, M., Tyler, B., Brem, H. & Saltzman, W. M. Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-l-nitrosourea in the rat brain. Pharm. Res. 13, 671–682 (1996).

    CAS  Google Scholar 

  126. Wait, S. D., Prabhu, R. S., Burri, S. H., Atkins, T. G. & Asher, A. L. Polymeric drug delivery for the treatment of glioblastoma. Neuro-Oncology 17, ii9–ii23 (2015).

    CAS  Google Scholar 

  127. Ramachandran, R. et al. Theranostic 3-dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma. Sci. Rep. 7, 43271 (2017).

    Google Scholar 

  128. Lee, J. H. et al. Collagen gel three-dimensional matrices combined with adhesive proteins stimulate neuronal differentiation of mesenchymal stem cells. J. R. Soc. Interface 8, 998–1010 (2011).

    CAS  Google Scholar 

  129. Jeong, D. U. et al. Hydrogel-mediated local delivery of dexamethasone reduces neuroinflammation after traumatic brain injury. Biomed. Mater. 16, 035002 (2021).

    CAS  Google Scholar 

  130. Tsintou, M. et al. The use of hydrogel-delivered extracellular vesicles in recovery of motor function in stroke: a testable experimental hypothesis for clinical translation including behavioral and neuroimaging assessment approaches. Neural Regen. Res. 16, 605–613 (2021).

    Google Scholar 

  131. Alvarado-Velez, M. et al. Immuno-suppressive hydrogels enhance allogeneic MSC survival after transplantation in the injured brain. Biomaterials 266, 120419 (2021).

    CAS  Google Scholar 

  132. Piantino, J., Burdick, J. A., Goldberg, D., Langer, R. & Benowitz, L. I. An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury. Exp. Neurol. 201, 359–367 (2006).

    CAS  Google Scholar 

  133. Sellers, D. L., Kim, T. H., Mount, C. W., Pun, S. H. & Horner, P. J. Poly(lactic-co-glycolic) acid microspheres encapsulated in Pluronic F-127 prolong hirudin delivery and improve functional recovery from a demyelination lesion. Biomaterials 35, 8895–8902 (2014).

    CAS  Google Scholar 

  134. Chu, D. S. et al. MMP9-sensitive polymers mediate environmentally-responsive bivalirudin release and thrombin inhibition. Biomater. Sci. 3, 41–45 (2015).

    CAS  Google Scholar 

  135. He, W., Reaume, M., Hennenfent, M., Lee, B. P. & Rajachar, R. Biomimetic hydrogels with spatial- and temporal-controlled chemical cues for tissue engineering. Biomater. Sci. 8, 3248–3269 (2020).

    CAS  Google Scholar 

  136. Taylor, S. J., McDonald, J. W. III & Sakiyama-Elbert, S. E. Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury. J. Control. Release 98, 281–294 (2004).

    CAS  Google Scholar 

  137. Nguyen, L. H. et al. Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment. Sci. Rep. 7, 42212 (2017).

    CAS  Google Scholar 

  138. George, P. M. et al. Electrical preconditioning of stem cells with a conductive polymer scaffold enhances stroke recovery. Biomaterials 142, 31–40 (2017).

    CAS  Google Scholar 

  139. Leprince, L., Dogimont, A., Magnin, D. & Demoustier-Champagne, S. Dexamethasone electrically controlled release from polypyrrole-coated nanostructured electrodes. J. Mater. Sci. Mater. Med. 21, 925–930 (2010).

    CAS  Google Scholar 

  140. Gao, W. & Borgens, R. B. Remote-controlled eradication of astrogliosis in spinal cord injury via electromagnetically-induced dexamethasone release from “smart” nanowires. J. Control. Release 211, 22–27 (2015).

    CAS  Google Scholar 

  141. Du, Z. J., Bi, G.-Q. & Cui, X. T. Electrically controlled neurochemical release from dual-layer conducting polymer films for precise modulation of neural network activity in rat barrel cortex. Adv. Funct. Mater. 28, 1703988 (2018).

    Google Scholar 

  142. Koch, B., Rubino, I., Quan, F. S., Yoo, B. & Choi, H. J. Microfabrication for drug delivery. Materials 9, 646 (2016).

    Google Scholar 

  143. Tian, X. et al. Injectable PLGA-coated ropivacaine produces a long-lasting analgesic effect on incisional pain and neuropathic pain. J. Pain 22, 180–195 (2021).

    CAS  Google Scholar 

  144. Menei, P., Montero-Menei, C., Venier, M. C. & Benoit, J. P. Drug delivery into the brain using poly(lactide-co-glycolide) microspheres. Expert Opin. Drug Deliv. 2, 363–376 (2005).

    CAS  Google Scholar 

  145. Menei, P. et al. Local and sustained delivery of 5-fluorouracil from biodegradable microspheres for the radiosensitization of malignant glioma: a randomized phase II trial. Neurosurgery 56, 242–248 (2005). discussion 242–248.

    Google Scholar 

  146. Bege, N. et al. In situ forming nimodipine depot system based on microparticles for the treatment of posthemorrhagic cerebral vasospasm. Eur. J. Pharm. Biopharm. 84, 99–105 (2013).

    CAS  Google Scholar 

  147. Hanggi, D. et al. Dose-related efficacy of a continuous intracisternal nimodipine treatment on cerebral vasospasm in the rat double subarachnoid hemorrhage model. Neurosurgery 64, 1155–1159 (2009). discussion 1159–1161.

    Google Scholar 

  148. Hanggi, D. et al. Local delivery of nimodipine by prolonged-release microparticles — feasibility, effectiveness and dose-finding in experimental subarachnoid hemorrhage. PLoS ONE 7, e42597 (2012).

    Google Scholar 

  149. Nance, E. Brain-penetrating nanoparticles for analysis of the brain microenvironment. Methods Mol. Biol. 1570, 91–104 (2017).

    CAS  Google Scholar 

  150. Nance, E. et al. Brain-penetrating nanoparticles improve paclitaxel efficacy in malignant glioma following local administration. ACS Nano 8, 10655–10664 (2014).

    CAS  Google Scholar 

  151. Ranganath, S. H. et al. The use of submicron/nanoscale PLGA implants to deliver paclitaxel with enhanced pharmacokinetics and therapeutic efficacy in intracranial glioblastoma in mice. Biomaterials 31, 5199–5207 (2010).

    CAS  Google Scholar 

  152. El Demerdash, N., Kedda, J., Ram, N., Brem, H. & Tyler, B. Novel therapeutics for brain tumors: current practice and future prospects. Expert Opin. Drug Deliv. 17, 9–21 (2020).

    CAS  Google Scholar 

  153. During, M. J. et al. Biochemical and behavioral recovery in a rodent model of Parkinson’s disease following stereotactic implantation of dopamine-containing liposomes. Exp. Neurol. 115, 193–199 (1992).

    CAS  Google Scholar 

  154. Zhigaltsev, I. V. et al. Liposomes containing dopamine entrapped in response to transmembrane ammonium sulfate gradient as carrier system for dopamine delivery into the brain of parkinsonian mice. J. Liposome Res. 11, 55–71 (2001).

    CAS  Google Scholar 

  155. Zhang, C. et al. Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats. J. Control. Release 263, 112–119 (2017).

    CAS  Google Scholar 

  156. Saucier-Sawyer, J. K. et al. Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors. J. Control. Release 232, 103–112 (2016).

    CAS  Google Scholar 

  157. Kunwar, S. et al. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro-Oncology 12, 871–881 (2010).

    CAS  Google Scholar 

  158. Allard, E., Passirani, C. & Benoit, J. P. Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 30, 2302–2318 (2009).

    CAS  Google Scholar 

  159. Chen, M. Y. et al. Surface properties, more than size, limiting convective distribution of virus-sized particles and viruses in the central nervous system. J. Neurosurg. 103, 311–319 (2005).

    Google Scholar 

  160. Zhang, C. et al. Strategies to enhance the distribution of nanotherapeutics in the brain. J. Control. Release 267, 232–239 (2017).

    CAS  Google Scholar 

  161. Lonser, R. R., Akhter, A. S., Zabek, M., Elder, J. B. & Bankiewicz, K. S. Direct convective delivery of adeno-associated virus gene therapy for treatment of neurological disorders. J. Neurosurg. 134, 1751–1763 (2020).

    Google Scholar 

  162. Johnston, L. C. et al. Clinically relevant effects of convection-enhanced delivery of AAV2-GDNF on the dopaminergic nigrostriatal pathway in aged rhesus monkeys. Hum. Gene Ther. 20, 497–510 (2009).

    CAS  Google Scholar 

  163. Papisov, M. I., Belov, V. V. & Gannon, K. S. Physiology of the intrathecal bolus: the leptomeningeal route for macromolecule and particle delivery to CNS. Mol. Pharm. 10, 1522–1532 (2013).

    CAS  Google Scholar 

  164. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 4, 147ra111 (2012).

    Google Scholar 

  165. Fowler, M. J. et al. Intrathecal drug delivery in the era of nanomedicine. Adv. Drug Deliv. Rev. 165, 77–95 (2020).

    Google Scholar 

  166. Tan, J. Y., Sellers, D. L., Pham, B., Pun, S. H. & Horner, P. J. Non-viral nucleic acid delivery strategies to the central nervous system. Front. Mol. Neurosci. 9, 108 (2016).

    Google Scholar 

  167. Wei, H. et al. Dual responsive, stabilized nanoparticles for efficient in vivo plasmid delivery. Angew. Chem. Int. Ed. Engl. 52, 5377–5381 (2013).

    CAS  Google Scholar 

  168. Schellinger, J. G. et al. Melittin-grafted HPMA-oligolysine based copolymers for gene delivery. Biomaterials 34, 2318–2326 (2013).

    CAS  Google Scholar 

  169. Cheng, Y., Yumul, R. C. & Pun, S. H. Virus-inspired polymer for efficient in vitro and in vivo gene delivery. Angew. Chem. Int. Ed. Engl. 55, 12013–12017 (2016).

    CAS  Google Scholar 

  170. Varkouhi, A. K., Scholte, M., Storm, G. & Haisma, H. J. Endosomal escape pathways for delivery of biologicals. J. Control. Release 151, 220–228 (2011).

    CAS  Google Scholar 

  171. Householder, K. T., Dharmaraj, S., Sandberg, D. I., Wechsler-Reya, R. J. & Sirianni, R. W. Fate of nanoparticles in the central nervous system after intrathecal injection in healthy mice. Sci. Rep. 9, 12587 (2019).

    CAS  Google Scholar 

  172. Calias, P., Banks, W. A., Begley, D., Scarpa, M. & Dickson, P. Intrathecal delivery of protein therapeutics to the brain: A critical reassessment. Pharmacol. Ther. 144, 114–122 (2014).

    CAS  Google Scholar 

  173. Khan, A. R., Liu, M., Khan, M. W. & Zhai, G. Progress in brain targeting drug delivery system by nasal route. J. Control. Release 268, 364–389 (2017).

    CAS  Google Scholar 

  174. Sellers, D. L. et al. Targeting ligands deliver model drug cargo into the central nervous system along autonomic neurons. ACS Nano 13, 10961–10971 (2019).

    CAS  Google Scholar 

  175. Poovaiah, N. et al. Treatment of neurodegenerative disorders through the blood–brain barrier using nanocarriers. Nanoscale 10, 16962–16983 (2018).

    CAS  Google Scholar 

  176. Yamamoto, A. et al. Absorption of water-soluble compounds with different molecular weights and [Asu1.7]-eel calcitonin from various mucosal administration sites. J. Control. Release 76, 363–374 (2001).

    CAS  Google Scholar 

  177. Thorne, R. G., Pronk, G. J., Padmanabhan, V. & Frey, W. H. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127, 481–496 (2004).

    CAS  Google Scholar 

  178. Miyake, M. M. & Bleier, B. S. The blood-brain barrier and nasal drug delivery to the central nervous system. Am. J. Rhinol. Allergy 29, 124–127 (2015).

    Google Scholar 

  179. Shrewsbury, S. B. et al. The SNAP 101 double-blind, placebo/active-controlled, safety, pharmacokinetic, and pharmacodynamic study of INP105 (nasal olanzapine) in healthy adults. J. Clin. Psychiatry 81, 19m13086 (2020).

    Google Scholar 

  180. Van de Bittner, G. C. et al. Positron emission tomography assessment of the intranasal delivery route for orexin A. ACS Chem. Neurosci. 9, 358–368 (2018).

    Google Scholar 

  181. Lochhead, J. J. & Thorne, R. G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 64, 614–628 (2012).

    CAS  Google Scholar 

  182. Song, Q. et al. Biomimetic ApoE-reconstituted high density lipoprotein nanocarrier for blood–brain barrier penetration and amyloid beta-targeting drug delivery. Mol. Pharm. 13, 3976–3987 (2016).

    CAS  Google Scholar 

  183. Bourganis, V., Kammona, O., Alexopoulos, A. & Kiparissides, C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur. J. Pharm. Biopharm. 128, 337–362 (2018).

    CAS  Google Scholar 

  184. Haque, S., Md, S., Sahni, J. K., Ali, J. & Baboota, S. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J. Psychiatr. Res. 48, 1–12 (2014).

    Google Scholar 

  185. Zada, M. H., Kubek, M., Khan, W., Kumar, A. & Domb, A. Dispersible hydrolytically sensitive nanoparticles for nasal delivery of thyrotropin releasing hormone (TRH). J. Control. Release 295, 278–289 (2019).

    CAS  Google Scholar 

  186. Ahmad, E. et al. Evidence of nose-to-brain delivery of nanoemulsions: cargoes but not vehicles. Nanoscale 9, 1174–1183 (2017).

    CAS  Google Scholar 

  187. Rinaldi, F. et al. inPentasomes: An innovative nose-to-brain pentamidine delivery blunts MPTP parkinsonism in mice. J. Control. Release 294, 17–26 (2019).

    CAS  Google Scholar 

  188. Mistry, A., Stolnik, S. & Illum, L. Nose-to-brain delivery: investigation of the transport of nanoparticles with different surface characteristics and sizes in excised porcine olfactory epithelium. Mol. Pharm. 12, 2755–2766 (2015).

    CAS  Google Scholar 

  189. Sonvico, F. et al. Surface-modified nanocarriers for nose-to-brain delivery: from bioadhesion to targeting. Pharmaceutics 10, 34 (2018).

    Google Scholar 

  190. Kamei, N. et al. Effective nose-to-brain delivery of exendin-4 via coadministration with cell-penetrating peptides for improving progressive cognitive dysfunction. Sci. Rep. 8, 17641 (2018).

    Google Scholar 

  191. Tosolini, A. P. & Sleigh, J. N. Intramuscular delivery of gene therapy for targeting the nervous system. Front. Mol. Neurosci. 13, 1047–1016 (2020).

    Google Scholar 

  192. Chen, Z., Fan, G., Li, A., Yuan, J. & Xu, T. rAAV2-retro enables extensive and high-efficient transduction of lower motor neurons following intramuscular injection. Mol. Ther. Methods Clin. Dev. 17, 21–33 (2020).

    CAS  Google Scholar 

  193. Xu, X. et al. Viral vectors for neural circuit mapping and recent advances in trans-synaptic anterograde tracers. Neuron 107, 1029–1047 (2020).

    CAS  Google Scholar 

  194. Towne, C., Schneider, B. L., Kieran, D., Redmond, D. E. Jr. & Aebischer, P. Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Ther. 17, 141–146 (2010).

    CAS  Google Scholar 

  195. Davidson, B. L. & Breakefield, X. O. Viral vectors for gene delivery to the nervous system. Nat. Rev. Neurosci. 4, 353–364 (2003).

    CAS  Google Scholar 

  196. Tosolini, A. P. & Morris, R. Targeting motor end plates for delivery of adenoviruses: an approach to maximize uptake and transduction of spinal cord motor neurons. Sci. Rep. 6, 33058 (2016).

    CAS  Google Scholar 

  197. Francis, J. W. et al. Tetanus toxin fragment C as a vector to enhance delivery of proteins to the CNS. Brain Res. 1011, 7–13 (2004).

    CAS  Google Scholar 

  198. Stoeckel, K., Schwab, M. & Thoenen, H. Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin. Brain Res. 132, 273–285 (1977).

    CAS  Google Scholar 

  199. Li, J. et al. Identification of peptide sequences that target to the brain using in vivo phage display. Amino Acids 42, 2373–2381 (2011).

    Google Scholar 

  200. Sellers, D. L. et al. Targeted axonal import (TAxI) peptide delivers functional proteins into spinal cord motor neurons after peripheral administration. Proc. Natl Acad. Sci. USA 113, 2514–2519 (2016).

    CAS  Google Scholar 

  201. Kerman, I. A., Enquist, L. W., Watson, S. J. & Yates, B. J. Brainstem substrates of sympatho-motor circuitry identified using trans-synaptic tracing with pseudorabies virus recombinants. J. Neurosci. 23, 4657–4666 (2003).

    CAS  Google Scholar 

  202. Card, J. P. et al. Neurotropic properties of pseudorabies virus: uptake and transneuronal passage in the rat central nervous system. J. Neurosci. 10, 1974–1994 (1990).

    CAS  Google Scholar 

  203. Thorne, R. G. & Frey, W. H. II Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin. Pharmacokinet. 40, 907–946 (2001).

    CAS  Google Scholar 

  204. Lee, D. C., Sellers, D. L., Liu, F., Boydston, A. J. & Pun, S. H. Synthesis and characterization of anionic poly(cyclopentadienylene vinylene) and its use in conductive hydrogels. Angew. Chem. Int. Ed. 59, 13430–13436 (2020).

    CAS  Google Scholar 

  205. Guo, B. & Ma, P. X. Conducting polymers for tissue engineering. Biomacromolecules 19, 1764–1782 (2018).

    CAS  Google Scholar 

  206. Mazzini, L. et al. Results from phase I clinical trial with intraspinal injection of neural stem cells in amyotrophic lateral sclerosis: a long-term outcome. Stem Cells Transl. Med. 8, 887–897 (2019).

    Google Scholar 

  207. Zhao, Y. et al. Dual targeted nanocarrier for brain ischemic stroke treatment. J. Control. Release 233, 64–71 (2016).

    CAS  Google Scholar 

  208. Xia, H., Anderson, B., Mao, Q. & Davidson, B. L. Recombinant human adenovirus: targeting to the human transferrin receptor improves gene transfer to brain microcapillary endothelium. J. Virol. 74, 11359–11366 (2000).

    CAS  Google Scholar 

  209. Maier, K. E. et al. A new transferrin receptor aptamer inhibits new world hemorrhagic fever mammarenavirus entry. Mol. Ther. Nucleic Acids 5, e321 (2016).

    CAS  Google Scholar 

  210. Wu, X. et al. Elucidation and structural modeling of CD71 as a molecular target for cell-specific aptamer binding. J. Am. Chem. Soc. 141, 10760–10769 (2019).

    CAS  Google Scholar 

  211. Fan, K. et al. Ferritin nanocarrier traverses the blood brain barrier and kills glioma. ACS Nano 12, 4105–4115 (2018).

    CAS  Google Scholar 

  212. Kariolis, M. S. et al. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci. Transl. Med. 12, eaay1359 (2020).

    CAS  Google Scholar 

  213. Li, X. et al. Enhanced in vivo blood–brain barrier penetration by circular Tau–transferrin receptor bifunctional aptamer for tauopathy therapy. J. Am. Chem. Soc. 142, 3862–3872 (2020).

    CAS  Google Scholar 

  214. Demeule, M. et al. Identification and design of peptides as a new drug delivery system for the brain. J. Pharmacol. Exp. Ther. 324, 1064–1072 (2008).

    CAS  Google Scholar 

  215. Dal Magro, R. et al. ApoE-modified solid lipid nanoparticles: A feasible strategy to cross the blood-brain barrier. J. Control. Release 249, 103–110 (2017).

    CAS  Google Scholar 

  216. He, C. et al. Two-step targeted hybrid nanoconstructs increase brain penetration and efficacy of the therapeutic antibody trastuzumab against brain metastasis of HER2-positive breast cancer. Adv. Funct. Mater. 28, 1705668 (2018).

    Google Scholar 

  217. Li, J. et al. A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood–brain barrier targeting brain metastases of breast cancer. ACS Nano 8, 9925–9940 (2014).

    CAS  Google Scholar 

  218. Jiang, Y., Yang, W., Zhang, J., Meng, F. & Zhong, Z. Protein toxin chaperoned by LRP-1-targeted virus-mimicking vesicles induces high-efficiency glioblastoma therapy in vivo. Adv. Mater. 30, 1800316 (2018).

    Google Scholar 

  219. Shi, X.-X. et al. Angiopep-2 conjugated nanoparticles loaded with doxorubicin for the treatment of primary central nervous system lymphoma. Biomater. Sci. 8, 1290–1297 (2020).

    CAS  Google Scholar 

  220. Tao, J. et al. Angiopep-2-conjugated “core–shell” hybrid nanovehicles for targeted and pH-triggered delivery of arsenic trioxide into glioma. Mol. Pharm. 16, 786–797 (2019).

    CAS  Google Scholar 

  221. Han, L. et al. Systemic delivery of monoclonal antibodies to the central nervous system for brain tumor therapy. Adv. Mater. 31, e1805697 (2019).

    Google Scholar 

  222. Meng, X. et al. Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nat. Commun. 11, 594 (2020).

    CAS  Google Scholar 

  223. Wen, J. et al. Sustained delivery and molecular targeting of a therapeutic monoclonal antibody to metastases in the central nervous system of mice. Nat. Biomed. Eng. 3, 706–716 (2019).

    CAS  Google Scholar 

  224. Xie, J. et al. Dual-sensitive nanomicelles enhancing systemic delivery of therapeutically active antibodies specifically into the brain. ACS Nano 14, 6729–6742 (2020).

    CAS  Google Scholar 

  225. You, L. et al. Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in parkinsonian mice. ACS Nano 12, 4123–4139 (2018).

    CAS  Google Scholar 

  226. Guo, Q. et al. A dual-ligand fusion peptide improves the brain-neuron targeting of nanocarriers in Alzheimer’s disease mice. J. Control. Release 320, 347–362 (2020).

    CAS  Google Scholar 

  227. Wang, P. et al. Systemic delivery of BACE1 siRNA through neuron-targeted nanocomplexes for treatment of Alzheimer’s disease. J. Control. Release 279, 220–233 (2018).

    CAS  Google Scholar 

  228. Burtea, C. et al. Magnetic resonance molecular imaging of vascular cell adhesion molecule-1 expression in inflammatory lesions using a peptide-vectorized paramagnetic imaging probe. J. Med. Chem. 52, 4725–4742 (2009).

    CAS  Google Scholar 

  229. Lutton, E. M. et al. Acute administration of catalase targeted to ICAM-1 attenuates neuropathology in experimental traumatic brain injury. Sci. Rep. 7, 3846 (2017).

    Google Scholar 

  230. Fehlings, M. G. et al. Rho inhibitor VX-210 in acute traumatic subaxial cervical spinal cord injury: design of the SPinal Cord Injury Rho INhibition InvestiGation (SPRING) Clinical Trial. J. Neurotrauma 35, 1049–1056 (2018).

    Google Scholar 

  231. Dautry-Varsat, A., Ciechanover, A. & Lodish, H. F. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc. Natl Acad. Sci. USA 80, 2258–2262 (1983).

    CAS  Google Scholar 

  232. Young, S. P., Bomford, A. & Williams, R. The effect of the iron saturation of transferrin on its binding and uptake by rabbit reticulocytes. Biochem. J. 219, 505–510 (1984).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from NIH 2R01NS064404 (S.H.P.), U54CA199090 (S.H.P.), R01AG063845 (S.H.P. and D.L.S.), 1R21HD100639 (E.N.), 5R35GM124677 (E.N.), R21NS099654 (D.L.S.), 1R01NS118247 (D.L.S.) and DOD SC130249 (S.H.P.).

Author information

Authors and Affiliations

Authors

Contributions

E.N., S.H.P., R.S. and D.L.S. contributed equally to the literature search, figure preparation, writing and editing of the article.

Corresponding authors

Correspondence to Elizabeth Nance, Suzie H. Pun, Rajiv Saigal or Drew L. Sellers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks Ravi Bellamkonda and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nance, E., Pun, S.H., Saigal, R. et al. Drug delivery to the central nervous system. Nat Rev Mater 7, 314–331 (2022). https://doi.org/10.1038/s41578-021-00394-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00394-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research