Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Nacre-inspired underwater superoleophobic films with high transparency and mechanical robustness

Abstract

Underwater superoleophobic materials have attracted increasing attention because of their remarkable potential applications, especially antifouling, self-cleaning and oil–water separation. A limitation of most superoleophobic materials is that they are non-transparent and have limited mechanical stability underwater. Here, we report a protocol for preparing a transparent and robust superoleophobic film that can be used underwater. It is formed by a hydrogel layer prepared by the superspreading of chitosan solution on a superhydrophilic substrate and biomimetic mineralization of this layer. In contrast to conventional hydrogel-based materials, this film exhibits significantly improved mechanical properties because of the combination of high-energy, ordered, inorganic aragonite (one crystalline polymorph of calcium carbonate) and homogeneous external hierarchical micro/nano structures, leading to robust underwater superoleophobicity and ultralow oil adhesion. Moreover, the mineralized film is suitable for neutral and alkaline environments and for containing organic solvent underwater and can be coated on different transparent materials, which has promising applications in underwater optics, miniature reactors and microfluidic devices. In this protocol, the time for the whole biomimetic mineralization process is only ~6 h, which is significantly shorter than that of traditional methods, such as gas diffusion and the Kitano method. The protocol can be completed in ~2 weeks and is suitable for researchers with intermediate expertise in organic chemistry and inorganic chemistry.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the fabrication procedure of the nacre-inspired mineralized (NIM) film based on superspreading and biomimetic mineralization.
Fig. 2: The NIM film is similar to natural nacre in both chemical composition and physical structure.
Fig. 3: Morphology characterization of the NIM film.
Fig. 4: Transparency of NIM films and their potential applications as underwater transparent oil-repellent coatings.
Fig. 5: NIM coatings for oil–water separation.
Fig. 6: The NIM coating for anti-oil in microfluidic channels.
Fig. 7: Chemical stability of the NIM film.
Fig. 8: The influence of biomimetic mineralization on surface wettability and underwater oil adhesion.
Fig. 9: Mechanically robust underwater superoleophobicity of NIM films.

Similar content being viewed by others

Data availability

The main data supporting the findings of this study are available within the article and its Supplementary Information files.

References

  1. Liu, M., Wang, S. & Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2, 17036 (2017).

    CAS  Google Scholar 

  2. Yong, J., Chen, F., Yang, Q., Huo, J. & Hou, X. Superoleophobic surfaces. Chem. Soc. Rev. 46, 4168–4217 (2017).

    CAS  PubMed  Google Scholar 

  3. Jiang, T., Guo, Z. & Liu, W. Biomimetic superoleophobic surfaces: focusing on their fabrication and applications. J. Mater. Chem. A 3, 1811–1827 (2015).

    CAS  Google Scholar 

  4. Ge, M. et al. Rational design of materials interface at nanoscale towards intelligent oil-water separation. Nanoscale Horiz. 3, 235–260 (2018).

    CAS  PubMed  Google Scholar 

  5. Liu, X. et al. Clam’s shell inspired high-energy inorganic coatings with underwater low adhesive superoleophobicity. Adv. Mater. 24, 3401–3405 (2012).

    CAS  PubMed  Google Scholar 

  6. Guo, T., Heng, L., Wang, M., Wang, J. & Jiang, L. Robust underwater oil-repellent material inspired by columnar nacre. Adv. Mater. 28, 8505–8510 (2016).

    CAS  PubMed  Google Scholar 

  7. Cai, Y. et al. Salt-tolerant superoleophobicity on alginate gel surfaces inspired by seaweed (Saccharina japonica). Adv. Mater. 27, 4162–4168 (2015).

    CAS  PubMed  Google Scholar 

  8. Cai, Y. et al. Filefish-inspired surface design for anisotropic underwater oleophobicity. Adv. Funct. Mater. 24, 809–816 (2014).

    CAS  Google Scholar 

  9. Wang, C., Zhang, F., Yu, C. & Wang, S. Durable underwater superoleophobic coatings via dispersed micro particle-induced hierarchical structures inspired by pomfret skin. ACS Appl. Mater. Interfaces 12, 42430–42436 (2020).

    CAS  PubMed  Google Scholar 

  10. Liu, M., Wang, S., Wei, Z., Song, Y. & Jiang, L. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv. Mater. 21, 665–669 (2009).

    CAS  Google Scholar 

  11. Yong, J. et al. Bioinspired transparent underwater superoleophobic and anti-oil surfaces. J. Mater. Chem. A 3, 9379–9384 (2015).

    CAS  Google Scholar 

  12. Xu, L. et al. Nacre-inspired design of mechanical stable coating with underwater superoleophobicity. ACS Nano 7, 5077–5083 (2013).

    CAS  PubMed  Google Scholar 

  13. Meng, X. F., Wang, M. M., Heng, L. P. & Jiang, L. Underwater mechanically robust oil-repellent materials: combining conflicting properties using a heterostructure. Adv. Mater. 30, 1706634 (2018).

    Google Scholar 

  14. Teng, C., Xie, D., Wang, J., Zhu, Y. & Jiang, L. A strong, underwater superoleophobic PNIPAM–clay nanocomposite hydrogel. J. Mater. Chem. A 4, 12884–12888 (2016).

    CAS  Google Scholar 

  15. Li, M. et al. Seeded mineralization leads to hierarchical CaCO3 thin coatings on fibers for oil/water separation applications. Langmuir 34, 2942–2951 (2018).

    CAS  PubMed  Google Scholar 

  16. Li, W. et al. Microfluidic fabrication of microparticles for biomedical applications. Chem. Soc. Rev. 47, 5646–5683 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, W. et al. Nacre-inspired mineralized films with high transparency and mechanically robust underwater superoleophobicity. Adv. Mater. 32, 1907413 (2020).

    CAS  Google Scholar 

  18. Wu, D. et al. Facile creation of hierarchical PDMS microstructures with extreme underwater superoleophobicity for anti-oil application in microfluidic channels. Lab Chip 11, 3873–3879 (2011).

    CAS  PubMed  Google Scholar 

  19. Su, B., Wang, S., Song, Y. & Jiang, L. Utilizing superhydrophilic materials to manipulate oil droplets arbitrarily in water. Soft Matter 7, 5144–5149 (2011).

    CAS  Google Scholar 

  20. Yong, J., Chen, F., Yang, Q. & Hou, X. Femtosecond laser controlled wettability of solid surfaces. Soft Matter 11, 8897–8906 (2015).

    CAS  PubMed  Google Scholar 

  21. Li, F. et al. Bioinspired nonswellable ultrastrong nanocomposite hydrogels with long-term underwater superoleophobic behavior. Chem. Eur. J. 375, 122047 (2019).

    CAS  Google Scholar 

  22. Yao, X. et al. Hydrogel paint. Adv. Mater. 31, e1903062 (2019).

    PubMed  Google Scholar 

  23. Lin, L. et al. Bio-inspired hierarchical macromolecule-nanoclay hydrogels for robust underwater superoleophobicity. Adv. Mater. 22, 4826–4830 (2010).

    CAS  PubMed  Google Scholar 

  24. Li, H. et al. A robust double-network hydrogel with under sea water superoleophobicity fabricated via one-pot, one-step reaction. J. Mater. Chem. B 4, 4662–4666 (2016).

    CAS  PubMed  Google Scholar 

  25. Yao, H. B., Ge, J., Mao, L. B., Yan, Y. X. & Yu, S. H. 25th anniversary article: artificial carbonate nanocrystals and layered structural nanocomposites inspired by nacre: synthesis, fabrication and applications. Adv. Mater. 26, 163–187 (2014).

    CAS  PubMed  Google Scholar 

  26. Addadi, L., Joester, D., Nudelman, F. & Weiner, S. Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem. Eur. J. 12, 980–987 (2006).

    CAS  PubMed  Google Scholar 

  27. Gehrke, N. et al. Retrosynthesis of nacre via amorphous precursor particles. Chem. Mater. 17, 6514–6516 (2005).

    CAS  Google Scholar 

  28. DeVol, R. T. et al. Nanoscale transforming mineral phases in fresh nacre. J. Am. Chem. Soc. 137, 13325–13333 (2015).

    CAS  PubMed  Google Scholar 

  29. Rudloff, J. & Cölfen, H. Superstructures of temporarily stabilized nanocrystalline CaCO3 particles: morphological control via water surface tension variation. Langmuir 20, 991–996 (2004).

    CAS  PubMed  Google Scholar 

  30. Xu, X., Han, J. T. & Cho, K. Formation of amorphous calcium carbonate thin films and their role in biomineralization. Chem. Mater. 16, 1740–1746 (2004).

    CAS  Google Scholar 

  31. Chen, L. et al. Antiplatelet and thermally responsive poly(N-isopropylacrylamide) surface with nanoscale topography. J. Am. Chem. Soc. 131, 10467–10472 (2009).

    CAS  PubMed  Google Scholar 

  32. Zang, D. et al. Interfacial engineering of hierarchically porous NiTi/hydrogels nanocomposites with exceptional antibiofouling surfaces. Adv. Mater. https://doi.org/10.1002/adma.201602869 (2017).

  33. Ding, C. et al. PANI nanowire film with underwater superoleophobicity and potential-modulated tunable adhesion for no loss oil droplet transport. Soft Matter 8, 9064–9068 (2012).

    CAS  Google Scholar 

  34. Gao, S. et al. A robust polyionized hydrogel with an unprecedented underwater anti-crude-oil-adhesion property. Adv. Mater. 28, 5307–5314 (2016).

    CAS  PubMed  Google Scholar 

  35. Yu, S. et al. Nacre-inspired biomineralized mesh toward scalable and robust oil–water separation with high efficiency. Adv. Mater. Interfaces 8, 2100852 (2021).

    CAS  Google Scholar 

  36. Fan, J. B. et al. Directly coating hydrogel on filter paper for effective oil-water separation in highly acidic, alkaline, and salty environment. Adv. Funct. Mater. 25, 5368–5375 (2015).

    CAS  Google Scholar 

  37. Zhang, F. et al. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Adv. Mater. 25, 4192–4198 (2013).

    CAS  PubMed  Google Scholar 

  38. Urrios, A. et al. 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab Chip 16, 2287–2294 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Romanov, V. et al. FDM 3D printing of high-pressure, heat-resistant, transparent microfluidic devices. Anal. Chem. 90, 10450–10456 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yong, J. et al. Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication. J. Mater. Chem. A 2, 8790–8795 (2014).

    CAS  Google Scholar 

  41. Sollier, E., Murray, C., Maoddi, P. & Di Carlo, D. Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11, 3752–3765 (2011).

    CAS  PubMed  Google Scholar 

  42. Hou, X. et al. Interplay between materials and microfluidics. Nat. Rev. Mater. 2, 17016 (2017).

    CAS  Google Scholar 

  43. Kim, M. M., Huang, Y., Choi, K. & Hidrovo, C. H. The improved resistance of PDMS to pressure-induced deformation and chemical solvent swelling for microfluidic devices. Microelectron. Eng. 124, 66–75 (2014).

    CAS  Google Scholar 

  44. Xu, L. P. et al. An ion-induced low-oil-adhesion organic/inorganic hybrid film for stable superoleophobicity in seawater. Adv. Mater. 25, 606–611 (2013).

    CAS  PubMed  Google Scholar 

  45. Halldorsson, J. A., Little, S. J., Diamond, D., Spinks, G. & Wallace, G. Controlled transport of droplets using conducting polymers. Langmuir 25, 11137–11141 (2009).

    CAS  PubMed  Google Scholar 

  46. Yong, J., Chen, F., Yang, Q., Jiang, Z. & Hou, X. A review of femtosecond-laser-induced underwater superoleophobic surfaces. Adv. Mater. Interfaces 5, 1701370 (2018).

    Google Scholar 

  47. Gu, Y., Yang, J. & Zhou, S. A facile immersion-curing approach to surface-tailored poly(vinyl alcohol)/silica underwater superoleophobic coatings with improved transparency and robustness. J. Mater. Chem. A 5, 10866–10875 (2017).

    CAS  Google Scholar 

  48. Finnemore, A. et al. Biomimetic layer-by-layer assembly of artificial nacre. Nat. Commun. 3, 966 (2012).

    PubMed  Google Scholar 

  49. Sugawara, A. & Kato, T. Aragonite CaCO3 thin-film formation by cooperation of Mg2+ and organic polymer matrices. Chem. Comm. 2000, 487–488 (2000).

    Google Scholar 

  50. Xu, G., Yao, N., Aksay, I. A. & Groves, J. T. Biomimetic synthesis of macroscopic-scale calcium carbonate thin films. Evidence for a multistep assembly process. J. Am. Chem. Soc. 120, 11977–11985 (1998).

    CAS  Google Scholar 

  51. Kitano, Y., Park, K. & Hood, D. W. Pure aragonite synthesis. J. Geophys. Res. 67, 4873–4874 (1962).

    CAS  Google Scholar 

  52. Kotachi, A., Miura, T. & Imai, H. Polymorph control of calcium carbonate films in a poly(acrylic acid)-chitosan system. Cryst. Growth Des. 6, 1636–1641 (2006).

    CAS  Google Scholar 

  53. Xiao, C. et al. Total morphosynthesis of biomimetic prismatic-type CaCO3 thin films. Nat. Commun. 8, 1398 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. Raut, H. K. et al. Tough and strong: cross-lamella design imparts multifunctionality to biomimetic nacre. ACS Nano 14, 9771–9779 (2020).

    CAS  PubMed  Google Scholar 

  55. Munro, N. H., Green, D. W. & McGrath, K. M. In situ continuous growth formation of synthetic biominerals. Chem. Commun. 49, 3407–3409 (2013).

    CAS  Google Scholar 

  56. Mao, L. B. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 354, 107–110 (2016).

    CAS  PubMed  Google Scholar 

  57. Liu, Y. et al. Evaluation of the attachment, proliferation, and differentiation of osteoblast on a calcium carbonate coating on titanium surface. Mater. Sci. Eng. C. 31, 1055–1061 (2011).

    Google Scholar 

  58. Muderrisoglu, C. et al. Nanostructured biointerfaces based on bioceramic calcium carbonate/hydrogel coatings on titanium with an active enzyme for stimulating osteoblasts growth. Adv. Mater. Interfaces 5, 1800452 (2018).

    Google Scholar 

  59. Li, B. et al. Hydrosoluble, UV-crosslinkable and injectable chitosan for patterned cell-laden microgel and rapid transdermal curing hydrogel in vivo. Acta Biomater. 22, 59–69 (2015).

    PubMed  Google Scholar 

  60. Oaki, Y., Kajiyama, S., Nishimura, T., Imai, H. & Kato, T. Nanosegregated amorphous composites of calcium carbonate and an organic polymer. Adv. Mater. 20, 3633–3637 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Key Research Program of the Chinese Academy of Sciences (XDPB24), the National Natural Science Foundation of China (21875269, 22035008, 31771026 and 51403158) and the International Partnership Program of the Chinese Academy of Sciences (1A1111KYSB20200010).

Author information

Authors and Affiliations

Authors

Contributions

W.C., S.W., B.W. and J.M. conceived and designed the experiments. W.C., P.Z., S.Y., R.Z. and L.X. performed experiments. W.C., P.Z., S.W. and J.M. analyzed and interpreted the data, developed the methodology and wrote the manuscript. S.W., B.W. and J.M. performed data interpretation, method development and editing of the manuscript.

Corresponding authors

Correspondence to Shutao Wang, Bailiang Wang or Jingxin Meng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Chen, W. et al. Adv. Mater. 32, 1907413 (2020): https://doi.org/10.1002/adma.201907413

Yu, S. et al. Adv. Mater. Interfaces 8, 2100852 (2021): https://doi.org/10.1002/admi.202100852

Key data used in this protocol

Chen, W. et al. Adv. Mater. 32, 1907413 (2020): https://doi.org/10.1002/adma.201907413

Yu, S. et al. Adv. Mater. Interfaces 8, 2100852 (2021): https://doi.org/10.1002/admi.202100852

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhang, P., Yu, S. et al. Nacre-inspired underwater superoleophobic films with high transparency and mechanical robustness. Nat Protoc 17, 2647–2667 (2022). https://doi.org/10.1038/s41596-022-00725-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00725-3

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing