Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction

Abstract

All-perovskite tandem solar cells promise higher power-conversion efficiency (PCE) than single-junction perovskite solar cells (PSCs) while maintaining a low fabrication cost1,2,3. However, their performance is still largely constrained by the subpar performance of mixed lead–tin (Pb–Sn) narrow-bandgap (NBG) perovskite subcells, mainly because of a high trap density on the perovskite film surface4,5,6. Although heterojunctions with intermixed 2D/3D perovskites could reduce surface recombination, this common strategy induces transport losses and thereby limits device fill factors (FFs)7,8,9. Here we develop an immiscible 3D/3D bilayer perovskite heterojunction (PHJ) with type II band structure at the Pb–Sn perovskite–electron-transport layer (ETL) interface to suppress the interfacial non-radiative recombination and facilitate charge extraction. The bilayer PHJ is formed by depositing a layer of lead-halide wide-bandgap (WBG) perovskite on top of the mixed Pb–Sn NBG perovskite through a hybrid evaporation–solution-processing method. This heterostructure allows us to increase the PCE of Pb–Sn PSCs having a 1.2-µm-thick absorber to 23.8%, together with a high open-circuit voltage (Voc) of 0.873 V and a high FF of 82.6%. We thereby demonstrate a record-high PCE of 28.5% (certified 28.0%) in all-perovskite tandem solar cells. The encapsulated tandem devices retain more than 90% of their initial performance after 600 h of continuous operation under simulated one-sun illumination.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device structure and PV performance of mixed Pb–Sn NBG PSCs with 3D/3D bilayer PHJ constructed.
Fig. 2: Energy diagram and simulated PV performance of Pb–Sn PSCs with and without PHJs.
Fig. 3: Charge-carrier dynamics at the 3D/3D bilayer PHJ.
Fig. 4: PV performance of all-perovskite tandem solar cells with 3D/3D bilayer PHJ in mixed Pb–Sn perovskite subcell.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials. Further data are available from the corresponding author on reasonable request.

References

  1. Jošt, M., Kegelmann, L., Korte, L. & Albrecht, S. Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency. Adv. Energy Mater. 10, 1904102 (2020).

    Article  Google Scholar 

  2. Li, Z. et al. Cost analysis of perovskite tandem photovoltaics. Joule 2, 1559–1572 (2018).

    Article  CAS  Google Scholar 

  3. Albrecht, S. & Rech, B. Perovskite solar cells: on top of commercial photovoltaics. Nat. Energy 2, 16196 (2017).

    Article  ADS  Google Scholar 

  4. Savill, K. J., Ulatowski, A. M. & Herz, L. M. Optoelectronic properties of tin–lead halide perovskites. ACS Energy Lett. 6, 2413–2426 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, Y. et al. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films. Nat. Energy 2, 16207 (2017).

    Article  ADS  CAS  Google Scholar 

  6. Ricciarelli, D., Meggiolaro, D., Ambrosio, F. & De Angelis, F. Instability of tin iodide perovskites: bulk p-doping versus surface tin oxidation. ACS Energy Lett. 5, 2787–2795 (2020).

    Article  CAS  Google Scholar 

  7. Park, S. M., Abtahi, A., Boehm, A. M. & Graham, K. R. Surface ligands for methylammonium lead iodide films: surface coverage, energetics, and photovoltaic performance. ACS Energy Lett. 5, 799–806 (2020).

    Article  CAS  Google Scholar 

  8. La-Placa, M. G. et al. Vacuum-deposited 2D/3D perovskite heterojunctions. ACS Energy Lett. 4, 2893–2901 (2019).

    Article  CAS  Google Scholar 

  9. Chen, C. et al. Arylammonium-assisted reduction of the open-circuit voltage deficit in wide-bandgap perovskite solar cells: the role of suppressed ion migration. ACS Energy Lett. 5, 2560–2568 (2020).

    Article  CAS  Google Scholar 

  10. Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019).

    Article  ADS  CAS  Google Scholar 

  11. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    Article  ADS  Google Scholar 

  12. Xiao, K. et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376, 762–767 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Gao, H. et al. Thermally stable all-perovskite tandem solar cells fully using metal oxide charge transport layers and tunnel junction. Sol. RRL 5, 2100814 (2021).

    Article  CAS  Google Scholar 

  14. Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Park, K., Lee, J. H. & Lee, J. W. Surface defect engineering of metal halide perovskites for photovoltaic applications. ACS Energy Lett. 7, 1230–1239 (2022).

    Article  CAS  Google Scholar 

  16. Liu, J. et al. Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Azmi, R. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Wei, M. et al. Combining efficiency and stability in mixed tin–lead perovskite solar cells by capping grains with an ultrathin 2D layer. Adv. Mater. 32, 1907058 (2020).

    Article  CAS  Google Scholar 

  19. Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photonics 16, 352–358 (2022).

    Article  ADS  CAS  Google Scholar 

  20. Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    Article  CAS  Google Scholar 

  21. Mosconi, E. & De Angelis, F. Mobile ions in organohalide perovskites: interplay of electronic structure and dynamics. ACS Energy Lett. 1, 182–188 (2016).

    Article  CAS  Google Scholar 

  22. Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Green, M. A. et al. Solar cell efficiency tables (Version 60). Prog. Photovolt. Res. Appl. 30, 687–701 (2022).

    Article  Google Scholar 

  24. Hu, S. et al. Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15, 2096–2107 (2022).

    Article  CAS  Google Scholar 

  25. Burgelman, M., Nollet, P. & Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000).

    Article  ADS  Google Scholar 

  26. Kapil, G. et al. Tin-lead perovskite fabricated via ethylenediamine interlayer guides to the solar cell efficiency of 21.74%. Adv. Energy Mater. 11, 2101069 (2021).

    Article  ADS  CAS  Google Scholar 

  27. Jang, Y. W. et al. Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nat. Energy 6, 63–71 (2021).

    Article  ADS  CAS  Google Scholar 

  28. Menzel, D. et al. Field effect passivation in perovskite solar cells by a LiF interlayer. Adv. Energy Mater. 12, 2201109 (2022).

    Article  CAS  Google Scholar 

  29. Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).

    Article  ADS  Google Scholar 

  30. Wu, Y. et al. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 1, 16148 (2016).

    Article  ADS  CAS  Google Scholar 

  31. Tong, J. et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Krogmeier, B., Staub, F., Grabowski, D., Rau, U. & Kirchartz, T. Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations. Sustain. Energy Fuels 2, 1027–1034 (2018).

    Article  CAS  Google Scholar 

  33. Caprioglio, P. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  ADS  PubMed  Google Scholar 

  34. Santbergen, R. et al. GenPro4 optical model for solar cell simulation and its application to multijunction solar cells. IEEE J. Photovolt. 7, 919–926 (2017).

    Article  Google Scholar 

  35. Li, L. et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022).

    Article  CAS  Google Scholar 

  36. Rühle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016).

    Article  ADS  Google Scholar 

  37. Thiesbrummel, J. et al. Understanding and minimizing Voc losses in all-perovskite tandem photovoltaics. Adv. Energy Mater. 13, 2202674 (2022).

    Article  Google Scholar 

  38. Stolterfoht, M. et al. Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells. Energy Environ. Sci. 10, 1530–1539 (2017).

    Article  CAS  Google Scholar 

  39. Wen, J. et al. Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Adv. Mater. 34, 2110356 (2022).

    Article  CAS  Google Scholar 

  40. Wu, P. et al. Efficient and thermally stable all-perovskite tandem solar cells using all-FA narrow-bandgap perovskite and metal-oxide-based tunnel junction. Adv. Energy Mater. 12, 220948 (2022).

    Article  Google Scholar 

  41. Han, Q. et al. Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb-Sn low-bandgap perovskite solar cells. Sci. Bull. 64, 1399–1401 (2019).

    Article  Google Scholar 

  42. Han, Y. et al. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139–8147 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2022YFB4200304), National Natural Science Foundation of China (U21A2076, 61974063), Natural Science Foundation of Jiangsu Province (BE2022021, BE2022026, BK20202008, BK20190315), Fundamental Research Funds for the Central Universities (0213/14380219, 0213/14380218, 0213/14380216, 0205/14380252), Frontiers Science Center for Critical Earth Material Cycling Fund (DLTD2109) and Program for Innovative Talents and Entrepreneur in Jiangsu. We would also like to thank the technical support for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (no. A2107).

Author information

Authors and Affiliations

Authors

Contributions

H.T. conceived the idea and directed the overall project. R.L., Y.W. and Q.L. fabricated all the devices and conducted the characterization. B.T. and F.F. performed the TA measurements. J.L. and Y.D. performed the HR-STEM and EDX measurements. C.D. and C.M. performed ToF-SIMS characterization. Y.G. performed the optical and electrical simulation of single and tandem solar cells with GenPro4. R.L. and J.L. carried out the SCAPS-1D simulation. H.G., P.W., C.L., S.Z., J.W., K.X., Z.L. and L.L. carried out device fabrication and materials characterization. R.L. and H.T. wrote the manuscript. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Hairen Tan.

Ethics declarations

Competing interests

Hairen Tan is the founder, chief scientific officer and chairman of Renshine Solar Co., Ltd., a company that is commercializing perovskite photovoltaics. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Michele De Bastiani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–49, Supplementary Notes 1–7 and Supplementary Tables 1–16 – see contents page for details.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, R., Wang, Y., Lu, Q. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 620, 994–1000 (2023). https://doi.org/10.1038/s41586-023-06278-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06278-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing