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We show that linear superpositions of plane waves involving a single-valued, covariantly stable
dispersion relation ωðkÞ always propagate outside the light cone unless ωðkÞ ¼ aþ bk. This implies that
there is no notion of causality for individual dispersion relations since no mathematical condition on the
function ωðkÞ (such as the front velocity or the asymptotic group velocity conditions) can serve as a
sufficient condition for subluminal propagation in dispersive media. Instead, causality can only emerge
from a careful cancellation that occurs when one superimposes all the excitation branches of a physical
model. This happens automatically in local theories of matter that are covariantly stable. Hence, we find
that the need for nonhydrodynamic modes in relativistic fluid mechanics is analogous to the need for
antiparticles in relativistic quantum mechanics.
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Introduction.—The “practical” definition of relativistic
causality is universally accepted: it is impossible to transmit
information faster than the vacuum speed of light [1–3].
The question is how to translate this principle into
mathematical constraints that our physical theories must
obey. In some cases, this question has an unambiguous
answer. In classical field theory, causality demands that the
characteristics of the field equations lay inside or upon the
light cone [4–8]. In quantum field theory, the commutator
of spacelike-separated observables must vanish [9–11]. In
other contexts, the mathematical nature of causality is less
understood.
Consider a homogeneous system in thermodynamic

equilibrium, and let ωðkÞ be the eigenfrequency of one
of its (linear) excitations, which is a function of the wave
number k [12]. Under which conditions is such dispersion
relation compatible with causality? Most attempted
answers revolve around imposing inequalities on the phase
velocity ðReωÞ=k, or on the group velocity dðReωÞ=dk
[13–15]. However, no fully consistent and universally
reliable criterion has been found. The most widely accepted
constraint is that the “front velocity” [16,17], or the
“asymptotic group velocity” [18], both of which usually
coincide by L’Hopital’s rule, should not exceed the speed of
light c (¼ 1, in our units), namely

vf ¼ lim
k→∞;k∈R

Reω
k

¼L’H lim
k→∞;k∈R

dReω
dk

∈ ½−1; 1�: ð1Þ

Unfortunately, this condition is far from satisfactory as
many famous acausal equations in physics fulfill (1) even if
the theory of partial differential equations tells us that they
propagate information at infinite speeds [4,8]. Three not-
able examples are the diffusion equation, the Euclidean
wave equation, and the linearized Benjamin-Bona-Mahony
(BBM) [19] equation, respectively:

ð∂t − ∂
2
xÞφ ¼ 0 ⇒ ω ¼ −ik2;

ð∂2t þ ∂
2
xÞφ ¼ 0 ⇒ ω ¼ �ik;

ð∂t þ ∂x − ∂t∂
2
xÞφ ¼ 0 ⇒ ω ¼ k

1þ k2
: ð2Þ

All these equations have vf ¼ 0. Furthermore, their phase
and group velocities are (sub)luminal for all k. Neverthe-
less, these three models are strongly acausal. The BBM
equation is particularly striking because one cannot attri-
bute the causality violation to the imaginary part of ω,
given that ω is real for real k. Yet, it is acausal as the lines
t ¼ const are spacelike characteristics [20].
This Letter shows that the limitations of (1) are mani-

festations of a fundamental impossibility. Namely, unless
ωðkÞ ¼ aþ bk for all k (with a, b constant), a single
dispersion relation ωðkÞ cannot be causal. Rather,
“causality” is a collective property of the system, which
describes how all the excitation branches ωnðkÞ combine
when the full initial value problem is set up. Therefore,
apart from ωðkÞ ¼ aþ bk, it is impossible to formulate a
sufficient condition for causality in the form of an
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inequality that ωðkÞ should obey. This is why, given a
causality criterion like (1), one can always find models that
fulfill it and are acausal, such as (2).
Nevertheless, we also show that one can overcome these

difficulties by appealing to specific structures present in
many (but not all) physical theories, which guarantee that
the dispersion branches combine “correctly” to ensure
causality. In particular, if the operator governing the
dynamics is local and the system is covariantly stable
(in precise senses defined below), all superluminal tails
cancel out; see Theorem 1 for a precise statement.
A key inequality.—Our analysis relies on the following

inequality, which must hold for all dispersion branches
describing disturbances around the equilibrium state of a
stable system in relativity [22,23]:

ImωðkÞ ≤ jImkj: ð3Þ

This covariant bound can be derived from the study of
retarded causal correlators of stable phases of matter, and it
is textbook material [24], whose importance in constraining
transport properties of matter was demonstrated in
Ref. [22]. Independently from the principle of causality, (3)
constitutes the physical requirement that a stable system
should be simultaneously stable in every inertial frame of
Ref. [25]. In fact, if (3) were violated, namely if there were
some k∈C for which Imω > jImkj, then a boost with
velocity v ¼ Imk=Imω would lead us to a new reference
frame where Imω0 > 0 and Imk0 ¼ 0 [23]. This would
imply that there is an observer who can detect a growing
Fourier mode, signaling, an instability [26–28]. For this
reason, we assume (3) holds as a basic stability property of
the system.
Single dispersion branches are superluminal.—Fix some

level of description of matter, which may be, e.g., quantum
field theory, kinetic theory, or hydrodynamics. Using esta-
blished techniques [29–32], one can compute all the
(possibly infinite) dispersion branches predicted by such
theory. Choose one of interest,ωðkÞ. According to conven-
tional wisdom [13–18], the relation ωðkÞ determines how
the corresponding excitation “propagates”, and there
should be some causality criterion for ωðkÞ, e.g., (1),
which guarantees that the excitation propagates sublumi-
nally. Now we prove that this intuitive interpretation
can be consistently maintained only in the trivial case
ωðkÞ ¼ aþ bk. In dispersive media, causality can never be
argued from ωðkÞ alone.
First, let us make the above (incorrect) intuition about the

causality of ωðkÞ more precise. Let φðxμÞ∈C be the linear
perturbation to a local observable of interest. For example,
φðxμÞ may be the local energy density fluctuation. Then,
consider a 1þ 1 dimensional profile φðt; xÞ that is con-
structed by superimposing plane waves all belonging solely
to the selected excitation branch ωðkÞ, i.e.,

φðt; xÞ ¼
Z þ∞

−∞
φðkÞei½kx−ωðkÞt� dk

2π
: ð4Þ

By setting t ¼ 0, we find that φðkÞ is the Fourier transform
of the initial data, φð0; xÞ. The straightforward definition of
“causal dispersion relation” is the following: If φð0; xÞ has
support in a set R, then the support of φðt; xÞ at later times
should be contained inside the future light cone of R, see
Fig. 1. As a consequence, if φð0; xÞ has compact spatial
support, one should find that φðt; xÞ has compact spatial
support for each fixed t > 0. Now we will show that, in
practice, this is never the case for φ given by (4). On the
contrary, single-branched excitations of the form (4) always
“travel” at infinite speed unless ω ¼ aþ bk (i.e., when the
medium is not dispersive).
A simple argument.—If φðt; xÞ vanishes outside the

future light cone of a compact set R, then also ∂tφðt; xÞ
must vanish there. Hence, to prove that φðt; xÞ exits the
light cone, it suffices to show that, for some t0 > 0, the
spatial profiles of φðt0; xÞ and ∂tφðt0; xÞ cannot both have
compact support simultaneously. We assume that φðt; xÞ is
smooth, but the argument can be generalized.
Fix t0 > 0. From (4) and the uniqueness of the Fourier

transform, we have that the spatial Fourier transform of
φðt0; xÞ is given by φðt0; kÞ ¼ φðkÞe−iωðkÞt0. Now, suppose
that φðt0; xÞ is compactly supported. Then, φðt0; kÞ extends
to an entire function of k∈C [33]. Under our assumptions,
we can bring time derivatives under the integral to conclude
that ∂tφðt0; xÞ has spatial Fourier transform φ̇ðt0; kÞ ¼
−iωðkÞφðt0; kÞ. Corollary 1.1 of [22] tells us that, if
ωðkÞ obeys (3), then it cannot be an entire function (unless
ω ¼ aþ bk). Therefore, φ̇ðt0; kÞ is the product of an entire
function with a function that is not entire. Such a function
can be entire only in the remote eventuality in which the
discrete zeroes of φðkÞ happen to cancel the singularities of
ωðkÞ. This requires a perfect fine-tuning of the initial data,
and it does not happen in general [34]. Furthermore,
according to Theorem 2 of [22], if ωðkÞ satisfies (3), then

FIG. 1. The principle of causality. If a perturbation has initial
support inside a region of space R (blue segment), then it cannot
propagate outside the set JþðRÞ called the “causal future of
R” [6], or “future light cone of R” [5] (red region).
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its singularities are never poles or essential singularities.
Instead, they are expected to be branch points, which
cannot be erased by multiplying ωðkÞ with an entire
nonzero function. Thus, φ̇ðt0; kÞ is not an entire function
and, therefore, ∂tφðt0; xÞ cannot have compact support,
as desired.
Application 1: Hegerfeldt paradox.—The above argu-

ment is a generalization of the well-known result (due to
Hegerfeldt [35]) that relativistic single-particle wave func-
tions of the form

φðt; xÞ ¼
Z þ∞

−∞
φðkÞeiðkx−

ffiffiffiffiffiffiffiffiffiffi
m2þk2

p
tÞ dk
2π

ð5Þ

must propagate outside the light cone [9]. Indeed, it can
be easily verified that the dispersion relation of the free
particle, ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
, obeys (3), and this forces it to be

nonanalytical, as testified by the square root. Hence, the
support of (5) expands at infinite speed [36], even if the
group velocity, vgðkÞ ¼ k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
, is subluminal.

Application 2: Necessity of nonhydrodynamic modes.—
An immediate corollary of our analysis is that the retarded
Green’s function of any theory for diffusion having only
one dispersion relation, ωðkÞ ¼ −iDk2 þOðk3Þ, always
exits the light cone. Thus, to build a subluminal Green’s
function, we need at least two dispersion relations (see [37],
Sec. 7.4). This explains why an additional (usually gapped)
mode is needed for causality [22].
Explanation.—The superluminal behavior of (4) in

causal matter seems absurd, but there is a simple explan-
ation: excitations of the form (4) cannot be truly localized,
unless ω ¼ aþ bk. They may seem to have compact
support, if φð0; xÞ is supported in R, but, in principle,
an observer can detect the excitation from outside R
already at t ¼ 0 by measuring some other observable. In
fact, we recall that the dispersion relation ωðkÞ is derived
from some underlying physical theory (e.g., quantum field
theory, kinetic theory, or hydrodynamics), which may
possess several other local observables besides φ. The fact
that the initial profile φð0; xÞ has support inside R does
not imply that all the measurable fields affected by the
excitation are unperturbed outsideR. Instead, it may be the
case that, due to this excitation, the perturbation to a second
observable ψðxμÞ of the theory has already unbounded
support at t ¼ 0. This is how, in principle, φ can propagate
outside the light cone without necessarily violating the
principle of causality in the full theory: there is no super-
luminal propagation of information if such information was
already accessible through the measurement of ψð0; xÞ
outsideR. Indeed, below we prove that if the perturbations
to all the observables are initially supported inside a
compact region R (i.e., the excitation is truly localized),
and the dynamics is governed by a local operator, then
φðt; xÞ cannot be expressed in the form (4), and it must
always combine at least two dispersion branches, unless
ω ¼ aþ bk.

Compactly supported excitations.—We assume that the
state of the system at a given time can be characterized, in
the linear regime, by a collection of smooth perturbation
fields ΨðxμÞ∈CD, which all vanish at equilibrium. We
assume that D is finite, although it can be as large as the
number of particles in a material volume element. In most
physical theories currently available (e.g., electrodynamics,
elasticity theory, or hydrodynamics), the 1þ 1 dimensional
equation of motion of the system takes the form

∂tΨ ¼ Lð∂xÞΨ; ð6Þ

where is Lð∂xÞ a polynomial of finite degree in ∂x, i.e.,
Lð∂xÞ ¼ A0 þ A1∂x þ � � � þ AM∂

M
x , where Aj are constant

D ×D matrices, andM∈N [38]. This is what we mean by
a “local operator.” In fact, operators involving an infinite
series of derivatives can produce nonlocalities and causality
violations. For example, if we set Lð∂xÞ ¼ ea∂x , Eq. (6)
becomes ∂tΨðt; xÞ ¼ Ψðt; xþ aÞ, which is clearly a non-
local theory. Indeed, the main reason why the BBM
equation in (2) is acausal is that its dynamical operator,
Lð∂xÞ ¼ ð∂2x − 1Þ−1∂x, is nonlocal [39,40].
The general formal solution to (6) reads

Ψðt; xÞ ¼
Z þ∞

−∞
eLðikÞtΨðkÞeikx dk

2π
; ð7Þ

where ΨðkÞ is the Fourier transform of the initial data
Ψð0; xÞ. Now, the field φðt; xÞ, being a linearized local
observable, is a local linear functional of the degrees
of freedom, namely φ ¼ Vð∂xÞΨ, where V is also a
polynomial of finite degree in ∂x, i.e., Vð∂xÞ ¼ B0þ
B1∂x þ � � � þ BN∂

N
x . Here, Bj are constant row vectors of

length D, and N ∈N. Therefore, we have the following
formula:

φðt; xÞ ¼
Z þ∞

−∞
VðikÞeLðikÞtΨðkÞeikx dk

2π
: ð8Þ

Assume that the excitation is initially supported inside R.
Then, all the components of Ψð0; xÞ are compactly sup-
ported, and all the components ofΨðkÞ are entire functions.
Furthermore, LðikÞ and VðikÞ are entire in k∈C, being
polynomials. Also, the matrix exponential is an analytic
function of the components of the matrix in the exponent,
so that eLðikÞt is entire in k. Combining these results, we can
conclude that the integrand of (8) is an entire function of k
for all t. For this reason, it cannot coincide with (4), unless
ωðkÞ ¼ aþ bk (i.e., in dispersion-free systems). This
shows that, when we construct the state (4) in a dispersive
medium, we implicitly allow some component of Ψ to have
unbounded support already at t ¼ 0, which is what we
wanted to prove. In the Supplemental Material [21], we
analyze the explicit example of the Klein-Gordon equation.
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Causality criterion for stable matter.—The above analy-
sis suggests that if the dynamics of the system is governed
by a local operator L, then all the dispersion branches will
automatically combine in a way to cancel the infinite tails
of the individual excitations (4). This intuition can be made
rigorous through the following theorem, according to
which, schematically,

�
local

equations

�
þ
�
stability in

all frames

�
⇒

�
relativistic

causality

�
:

More precisely, note the following:
Theorem 1.—If LðikÞ and VðikÞ are polynomials of

finite degree in ik, and the eigenvalues ωnðkÞ of iLðikÞ
obey the stability requirement (3) for all k∈C, then all
smooth linear excitations propagate subluminally, in the
sense that the support of φðt; xÞ, as given by (8), is
contained within the future light cone of the support
of Ψð0; xÞ.
Proof.—We will focus on the case where Ψð0; xÞ has

support inside the interval ½−1; 0�. We will verify that
φðt; xÞ vanishes for x > t ≥ 0. More general cases can be
recovered from here by invoking linearity, translation
invariance, and closure of the solution space.
Consider the complex integral

I ¼
Z
Γ
VðikÞeLðikÞtΨðkÞeikx dk

2π
; ð9Þ

whereΓ is the closed loop in complex k space in Fig. 2, in the
limit of large R. Since the integrand is entire, I ¼ 0. Let us
now show that, if x > t ≥ 0, then the contribution coming
from the upper semicircle decays to zero asR → þ∞, so that
0 ¼ I ¼ φðt; xÞ; see Eq. (8). To this end, we first note that,
according to the Jordan-Chevalley decomposition theorem,
the matrix LðikÞ can be expressed as

LðikÞ ¼ −i
X
n

ωnðkÞPnðkÞ þN ðkÞ; ð10Þ

where Pn are complementary eigenprojectors (so that
PmPn ¼ δmnPn,

P
n Pn ¼ I), and N is a nilpotent matrix

(N a ¼ 0 for some a∈N) which commutes with all Pn.
Thus, the integrand in (9) can be rewritten as

X
n

Xa−1
j¼0

V
ðN tÞj
j!

Pneiðkx−ωntÞΨ: ð11Þ

Thematrix elements ofN j andPn grow at most like powers
of jkj. This follows from [41] [Chap. 2, Eqs. (1.21) and
(1.26)], applied to the matrix ðikÞ−MLðikÞ regarded as a
polynomial in ðikÞ−1 → 0, combined with the fact that
ðikÞ−MLðikÞ and LðikÞ have the same invariant subspaces.
On the other hand, ifImk ≥ 0, and x > t ≥ 0, we have the
following estimates:

jeiðkx−ωntÞj ¼ e−xImkþtImωn ≤ e−ðx−tÞImk ≤ 1;

jΨðkÞj ¼
����
Z

0

−1
ex̃ImkΨð0; x̃Þe−ix̃Rekdx̃

���� ≤ L1½Ψð0; xÞ�:

ð12Þ
In the first line, we have invoked the inequality (3). In the
second line, we have used the fact that ex̃Imk ≤ 1 inside
the interval ½−1; 0�. Note that Ψð0; xÞ, being continuous
and compactly supported, has finite L1 norm. From the
estimates (12), we can conclude that (11) decays exponen-
tially to zero when Imk → þ∞. Furthermore, since
ΨðRekþ iImkÞ, regarded as a function of Rek, is the
Fourier transform of the Schwartz function exImkΨð0; xÞ, it
is itself a Schwartz function [33], meaning that (11) decays
to zero faster than any power also when Rek → ∞. It
follows that, as R2 ¼ ðRekÞ2 þ ðImkÞ2 → þ∞, the inte-
gral over the semicircle converges to zero since the integrand
decays faster than any power of R. ▪
Most derivations of (1) rely on the assumption that ω ≈

vfk for large k∈C, so that (1) is a direct consequence
of (3). However, (3) is a much more stringent condition,
as it automatically rules out the acausal equations (2).
Indeed, the apparent success of (1) in many situations can
be traced back to (3) through the following theorem
proven below:
Theorem 2.—If (6) is a hyperbolic first-order system,

with Lð∂xÞ ¼ −Ξ −M∂x, then (3) implies (1), and the
characteristic velocities coincide with the front velocities.
Proof.—The ratios ωn=k are eigenvalues of the matrix

iLðikÞ
k

¼ Mþ ðikÞ−1Ξ: ð13Þ

If we regard the right-hand side as a polynomial in ðikÞ−1,
we can take the limit as ðikÞ−1 → 0 and apply the continuity
property of eigenvalues [41] to conclude that ωn=k must
converge to eigenvalues of M for large k∈C. But the
eigenvalues of M are the characteristic velocities of the
system, and they are real (by hyperbolicity), so that

lim
k→∞;k∈C

ωn

k
¼ vch;n ∈R: ð14Þ

Restricting the above limit to real k, and using the
continuity of Re, we find that the characteristic velocities

FIG. 2. Path of integration for the proof of Theorem 1.
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coincide with the front velocities. Restricting the limit to
imaginary k, we find that (3) implies causality.

vch;n ¼Re

�
lim

k→∞;k∈R

ωn

k

�
¼ lim

k→∞;k∈R

Reωn

k
¼ vf;n;

vch;n ¼Re

�
lim

k→∞;k∈ iR

ωn

iImk

�
¼ lim

k→∞;k∈ iR

Imωn

Imk
∈ ½−1;1�:

ð15Þ

This completes our proof. ▪
While the above analysis was restricted to classical initial

value problems, its broad implications may also be extrapo-
lated to quantum systems. For example, some conformal
field theories are known to be acausal [42]. Given that such
theories are local, we can “apply” our Theorem 1 to conclude
that such theories are not covariantly stable and violate the
bound (3), in agreement with Sec. III.A of [25].
Correlators in QFT.—Causality requires multiple

dispersion relations also in QFT. Given a local observable
operator φ̂ðxμÞ, the correlator GðxμÞ ¼ h½φ̂ðxμÞ; φ̂ð0Þ�i has
support inside the light cone [9]. But since the slices of the
light cone at constant time are compact spheres, the spatial
Fourier transform Gðt;kÞ must be entire in k for all t [33].
This is why introducing momentum cutoffs or “patching”
correlators in momentum space leads to causality violations
[43]: it breaks analyticity. Furthermore, if Gðt;kÞ can be
expressed as a superposition of modes of the form e−iωnðkÞt
(see e.g., [44]), then we know that all the nonanalyticities of
the individual frequencies ωnðkÞ must cancel out.
Final remarks.—Consider the following puzzle: All

solutions of the relativistic Schrödinger equation i∂tφ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ∂

2
x

p
φ are also solutions of the Klein-Gordon equa-

tion −∂2tφ ¼ ðm2 − ∂
2
xÞφ. Nevertheless, the former is noto-

riously acausal [9], while the latter is causal. This defies the
intuition of causality as a statement about the propagation
speed of φ. How can the same function φðt; xÞ be super-
luminal when viewed as a solution of one equation and
subluminal when viewed as a solution of another equation?
Here, we solved this puzzle by showing that causality is

not an intrinsic property of the fields themselves. Rather, it
is a property of how we “attach information” to the fields by
defining the physical state. The existence of faster-than-
light motion does not result in causality violation if the
motion carries no new information about the state. Indeed,
relativistic Schrödinger and Klein-Gordon differ by the way
they define the physical state at a given time: fφðxÞg in
the former, and fφðxÞ; ∂tφðxÞg in the latter. The puzzle
arises because compactly supported field states within
relativistic Schrödinger (i.e., localized φ profiles) must
have unbounded support within Klein-Gordon (i.e., cannot
be localized in ∂tφ); see Supplemental Material [21].
Starting from this intuition, we showed that nonhydro-

dynamic modes become necessary for relativistic viscous
hydrodynamics for the same reason that antiparticles are

necessary for relativistic quantum mechanics: defining a
notion of locality in dispersive systems requires at least two
dispersion relations.

Note added.—Recently, other formulations of Theorems 1
and 2 were proposed [45,46].
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