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In the hydrodynamic regime, field theories typically have their boost symmetry spontaneously broken
due to the presence of a thermal rest frame although the associated Goldstone field does not acquire
independent dynamics. We show that this is not the case for Carrollian field theories where the boost
Goldstone field plays a central role. This allows us to give a first-principles derivation of the equilibrium
currents and dissipative effects of Carrollian fluids. We also demonstrate that the limit of vanishing speed of
light of relativistic fluids is a special case of this class of Carrollian fluids. Our results shine light on the
thermodynamic properties and thermal partition functions of Carrollian field theories.
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Introduction.—In the past few years Carrollian physics,
emerging by taking the limit of the vanishing speed of light,
has been found useful for describing a variety of phenomena
in contexts ranging from black holes [1-4], cosmology [5,6],
gravity [3,7-16], to hydrodynamics [4,5,17-24]. Concretely,
Carrollian fluids can be used to describe Bjorken flow, which
is relevant for models of the quark-gluon plasma, cf. [23]
(and its conformal generalization, Gubser flow [25]).
Carrollian fluids also model dark energy in inflationary
models [5]. Furthermore, Carrollian symmetries are expected
to have a role to play in exotic phases of matter (e.g., via
Carroll-fracton dualities [26-29] and in superconducting
twisted bilayer graphene [30]).

Many of the properties encountered in this Carrollian
limit are expected to be explained from underlying
quantum field theories with inherent Carrollian sym-
metries. Indeed, if conformal symmetry is present in
addition, such theories would be putative holographic
duals to flat space gravity [31-41]. However, when
attempting to formulate such Carrollian field theories,
several issues have been pointed out including violations
of causality, lack of well-defined thermodynamics, and ill-
defined partition functions [5,24]. Our goal is to show that
the lack of well-defined thermodynamics in Carrollian
field theories is expected in the hydrodynamic regime, but
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that this issue can be cured when carefully accounting for
the Carrollian symmetries.

The approach we take is to consider the hydrodynamic
regime of such putative Carrollian field theories and show
how to construct their equilibrium partition function and
near-equilibrium dynamics. In particular, we will show that
there is no proper notion of temperature in Carrollian fluids
unless the Goldstone field of spontaneous broken boost
symmetry is taken into account. This allows us to construct
a well-defined hydrodynamic theory of Carrollian fluids
(similar to framids in the language of [42,43]). In the
process, we show that seemingly different approaches to
Carrollian hydrodynamics previously pursued in the liter-
ature [5,17-24] are in fact equivalent and special cases of
the Carrollian fluids we derive.

The fact that boost symmetry is spontaneously broken
in hydrodynamics is not unexpected. Thermal states
break the boost symmetry spontaneously due to the
presence of a preferred rest frame aligned with the thermal
vector [43,44]. In the context of hydrodynamics the
thermal vector is the combination u*/T of the unit
normalized fluid velocity u* and temperature 7. On the
other hand, the Goldstone field associated with the break-
ing of boost symmetry does not typically feature in the
low energy spectrum of the theory because it is determined
in terms of the other dynamical fields (see, e.g., [42]). This
is easy to show for relativistic fluids. Consider a (d + 1)-
dimensional spacetime metric g,, = E4 E'y where E is the
set of vielbeins, u =0, ...,d are spacetime indices, and
A =0, ...,d are internal Lorentz indices. The Goldstone
field associated to spontaneous breaking of Lorentz boost
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symmetry is the vector £, = AY where AY is the Lorentz
boost matrix [42], and acquires an expectation value
(¢4) = &% in the ground state. In thermal equilibrium
we can construct an equilibrium partition function S =
[ d* x\/=gP(T,u"¢,) where P is the fluid pressure. The
temperature is given by T = T,/|K| with T, a global
constant temperature, and the fluid velocity is uw* =
K*/|K| satisfying u,u" = —1 and defined in terms of
the Killing (thermal) vector K* with modulus |K|> =
—9g,,K*K". We furthermore defined £, = Ejjf 4 satisfying
2, " = —1. The Goldstone equation of motion obtained
from varying the partition function S with respect to
£y is [42]

oS
8, +'¢,)—=0. 1
@+t 5 (1)
This equation implies u* = —¢,u** for arbitrary thermo-

dynamic coefficients, and can only be satisfied if ¥ = u*.
Indeed, we see that the dynamics of the Goldstone field £# is
determined by the dynamics of the fluid velocity and hence
can be removed from the hydrodynamic description. The
same conclusion is reached for the case of spontaneous
breaking of Galilean (Bargmann) boost symmetry [45] (see
also [44]). However, in the case of Carrollian symmetry, as
we will show, the boost Goldstone acquires its own
independent dynamics. Below we introduce Carrollian
geometry and use it to show that, naively, there is no
well-defined notion of temperature.

Carrollian geometry and the lack of temperature.—A
weak Carrollian geometry on a (d 4 1)-dimensional mani-
fold M is defined by a Carrollian structure (v*,h,,)
consisting of the nowhere-vanishing Carrollian vector field
v¥, and the corank-1 symmetric tensor h,,, the “ruler,”
satisfying h,,0* = 0. It is useful to define inverses (z,, ")
satisfying ¥z, = —1, and 7, =0, as well as the
completeness relation —uv#z, + h*’h,, = &,. It is also
useful to introduce the spatial vielbeins ey and their
inverses ¢, which can be used to write hy = ejeqy.
Under Carrollian boosts, the inverses transform as

ScTy =M,  Sch™=21,h"¥¥), (2)
corresponding to Sqely = v#1,, where we have used
that v#4, = 0. A strong Carrollian geometry is a weak
Carrollian geometry together with an affine connection.
We focus mainly on weak Carrollian geometry but discuss
strong Carrollian geometry in Appendix D of the Supple-
mental Material [46].

Given the Carroll geometry and the existence of a
thermal vector in equilibrium, namely the spacetime
Killing vector k¥, one can proceed as for other (non)-
Lorentzian field theories [54—65] and construct an equi-
librium partition function by identifying the invariant

scalars under all local symmetries which the pressure
P can depend on, as above Eq. (1) for the relativistic case.
A more thorough construction of the partition function will
be given in a later section. Here we note that for non-
relativistic theories the temperature 7 is given by the scalar
T =T,/(k't,) with T, a constant global temperature.
However, in the Carrollian case 7 is not invariant under
boost transformations since d¢(k*z,) = k1, # 0. Indeed,
there is no well-defined notion of temperature for arbitrary
observers [66]. This is rooted in the fact that it is not
possible to impose a timelike normalization condition on
spacetime vectors such as the fluid velocity since w7, is
not boost invariant. This argument does not rely on any
specific model of Carrollian (quantum) field theory since
these statements are valid in the hydrodynamic regime.
This suggests that well-defined thermodynamic limits of
such putative theories are subtle. Below we introduce the
boost Goldstone and use it to show that it can be used to
define an appropriate notion of temperature.

The Carroll boost Goldstone.—We define the boost
Goldstone as the vector @* which transforms under
Carrollian boosts 1, as

Sl = —hh,, (3)

where 4, 0* = 0. This implies that only the spatial part of ¢*
is physical, which we can enforce by endowing the
Goldstone with a timelike Stueckelberg symmetry of the
form

o501 = v, (4)

where y is an arbitrary function [67]. With this we can build
the boost and Stueckelberg invariant vielbeine

%ﬂ = Tﬂ -+ hﬂbeyy éﬁ - eg + Uﬂeﬂeﬂav (5)
which lead to the following invariant ruler:
Y =5 ehel = W + v'v* (02 4 27,0°) + 206", (6)

where 6% = h,,0"'¢”. Together with v* and h,,,, these form

an Aristotelian structure [68],

Hvs

TS A
'z, =0, 7, =~—1,

Wh,, =8 +v't, =0, (7)
that is partly dynamical due to the Goldstone 6*. The low-
energy effective action for the Carrollian boost Goldstone is
a two-derivative Hofava—Lifshitz type action as we show in
Appendix A of [46]. If coupled to Carrollian gravity the
resultant action would be derivable from the limit of the
vanishing speed of light of the Einstein-Aether theory [69].
Before showing how the Goldstone allows one to define a
notion of temperature, we first discuss the currents and
conservation laws.
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Currents and conservation laws.—We now consider an
arbitrary fluid functional (or free energy) S[z,. h,,; 6"] for a
Carrollian fluid with spontaneously broken boosts. The

variation of this functional is
1
88 = /dd“xe |:—T”51'ﬂ + ET””éh,w - K,,(%”‘], (8)

where T* is the energy current, 7#¥ the stress-momentum
tensor, and K, the response to the Goldstone field. In
particular K, = 0 gives the analogous equation of motion
for the Goldstone as in (1). The measure is defined as
e = det(z,, e}) = det(%,, e;;). The Ward identities for the
Stueckelberg and boost symmetries are, respectively,

K,=0, T"h,=K,. 9)
The equation of motion for the Goldstone, K, = 0, imposes
the condition 7%h,, = 0. In other words, the boost Ward
identity now becomes the equation of motion for the
Goldstone. The momentum-stress tensor is not boost invari-
ant. In fact, computing the second variation, which must
vanish 6¢(6¢S) = 0, we find that 67" = 6.K, = 0 and
6T = 2T(”h”)/’/1/,. The associated energy-momentum
tensor (EMT) Ty = —t,T# + T*h
invariant and transforms as

L, 1s also not boost

ScTh = K, b2, (10)

where we used (9). Doing the same for the Stueckelberg
symmetry, the condition 85(55S) = 0 implies that 5577 =
—yv"K,. Hence, the EMT is both boost and Stueckelberg
invariant if K, = 0. The diffeomorphism Ward identity
reads as

=0, (11)

1
e™'0,(eTh) + T+0,7, — ETﬂDaﬂh’"’

where we used that K, = 0. Itis possible to obtain manifestly
boost invariant currents, including the EMT, by formulating
the action in terms of the effective Aristotelian structure (5),
as we show in Appendix B of [46].

Equilibrium partition function and Carrollian fluids.—
To derive the currents of Carrollian fluids, we consider the
equilibrium partition function construction. An equilibrium
Carrollian background consists of a set of symmetry
parameters K = (k*, A%, yx), where k* is a Killing vector
and A is a boost symmetry parameter, while yx is a
Stueckelberg symmetry parameter. The various structures
transform according to

oxv' =£,04=0,
oxhy, =£ih,, =0,
Sxh = £, + 22K ) =0,

SO = £,0" — W AK + yKor =0. (12)

Sk, =£,7,+ 45 =0,

The boost and Stueckelberg symmetry parameters trans-
form as
5/152565/1[15—;61(/1 s 5){K:£§)(K—£k)(, (13)

under infinitesimal diffeomorphisms generated by &,
infinitesimal Carrollian boosts 4, and Stueckelberg trans-
formations y. As we show in Appendix B of [46], 2§ and
X will not play a role in the effective fluid description.

Before enumerating the possible invariant scalars, we
must provide a gradient ordering. As usual we take the
geometry itself to be of ideal order, that is, 7, ~ h,, ~
v ~ " ~ O(1). Since " enters the definition of 7, it must
have the same ordering, " ~ O(1). Gradients of these
structures are O(d) and hence suppressed in a hydrodynamic
expansion. Given this gradient scheme the only two ideal
order invariants are

T =Ty/%,k, i = hyutu, (14)

where u# = k*/7,k”, which satisfies 7,u* = 1. We note
that we can now define a notion of temperature 7 that is
invariant for all observers. The scalar #* is the modulus of
the spatial fluid velocity. Generically the fluid velocity can
be decomposed as w* = —v* + i*, where i#* = h*u* with
W = fz”/’hpy. We furthermore define u, = h,,u* = h,,ii*,
such that @# = i"u”, but ii* # h*ii,. Note in particular
that u* decomposes as follows relative to the Carrollian
structure:

w = —v*(1 —0"u,) + hou”. (15)

The hydrostatic partition function at ideal order is given by
S= [d*'xeP(T,i*). Using the general action variation (8)
together with the “variational calculi” 67#* = 2y h”)”ér/, -
W h*°6h,, and 6v* = v"1v*ét, — W**1”5h,, we obtain the
ideal order currents:

To)

TH = I+ st — 25T + mi)ule”),

K(O)y = (ST+m17¢2)17tﬂ, (16)

= Pv* + sTu* + mi*u*,

where the subscript (0) indicates that the currents are of ideal
order O(1) and the entropy s and mass density m are defined
via dP = sdT + mdu?. The associated EMT is given by
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T/l

o = P&, + mutii, — (sT + mi®) (s, + 0#i,), (17)

which transforms as in (10).

The equation of motion for the Goldstone K, =0,
which is equivalent to the boost Ward identity, gives a
constraint on the dynamics

(sT + mi?)ii, = 0, (18)

and can be viewed as a framid condition for Carrollian fluids.

Defining the energy density as & = %,,T’(()), the Goldstone

equation has two branches of solutions: either £ + P =
sT + mii? = 0 or i, = 0. Neither of them allows for the
elimination of the Goldstone 6" from the low-energy
description. The constraint (18) was derived in equilibrium,
but we show in Appendix B of [46] that it also holds off
equilibrium, although it receives corrections due to dissipa-
tive effects. As such, together with (11), it provides the ideal
order dynamics for Carrollian fluids. Equations (16)—(18) are
a central result of this work as they provide a well-defined
notion of Carrollian fluids. Below we show that the ¢ — 0
limit of relativistic fluids gives rise to a Carrollian fluid
with #, = 0.

The ¢ — 0 limit of a relativistic fluid.—The ¢ — 0 limit
of relativistic fluids was considered in [17,18,20] (see
also [23]) for a specific class of metrics. The same limit
was taken in [24], where it was referred to as a “timelike
fluid.” Here, we demonstrate that these notions coincide and
correspond to the special case of the Carrollian fluid we
introduced above with , = 0, and that the emergence of the
Goldstone can be understood from the ultralocal expansion
of the Lorentzian geometry. The relativistic EMT is given by

E+P )
T”UZTU”UD+P5ﬁ, (19)
where U*U"g,, = —c?, and where the “hat” indicates

relativistic thermodynamic quantities. To take the limit,
we first consider the metric and its inverse in “pre-ultra-
local (PUL) variables” [3]

G = —czTﬂT,, +1I

1
e G== VATV (20)

where T, V¥ =-1, T, =V, =0, I, =
8, + VAT,. The leading order components of the PUL
variables correspond to the fields that make up the
Carrollian structure, e.g., V¥ = v* + O(c?). We write the
expansion of the relativistic fluid velocity relative to the PUL
variables as

UF = V¥ — Pur,

for some u#. Crucially, U* is invariant under local Lorentz
boosts while 5-V# = c2h#*1, + O(c*), implying that

Scw! = —h*), + O(c?). This shows that u* cannot be
identified with a fluid velocity in the Carrollian limit.
Indeed, we may identify the spatial part of the leading order
term in the ¢? expansion of u* with the spatial part of the
boost Goldstone

I, " = h, 0" + O(c?) =6, + O(c?). (21)

Using this, together with U, = ¢*%, + O(c*) the EMT
becomes

T4 = (€ + P)v*3, + P& + O(c?), (22)

where £ and P are the leading order contributions of Eand P,
respectively, satisfying the Euler relation £ + P = sT'. This
is exactly the “timelike” fluid of [24], corresponding to
the u, = 0 branch of the Carrollian fluid we described
above [70].

It is instructive to take the ¢ — 0 limit of the relativistic

equation of motion @MT’J = 0, where v is the Levi-Civita
connection of the spacetime metric g,,. Deferring the
details to Appendix C of [46], we note here that the
equations of motion in the limit ¢ — 0 can be expressed as

v"9,€ = (£ + P)K,
WP = —* (€ + P) + (€ + P)Kh™8,
— nV (€ + P)8,), (23)

where K = h*K,, == —Sh*£,h,, is the trace of the
intrinsic torsion of the Carrollian structure [71], and is
sometimes referred to as the “Carrollian expansion,” while
@ = 2h" v oy, — hﬂ”h”"égKW. The first term in @* is
sometimes referred to as the “Carrollian acceleration,” while
the second term comes from the ¢? expansion of the Levi-

Civita connection. The covariant derivative V is a Carroll
compatible connection that arises in the O(1) piece of the ¢?
expansion of the Levi-Civita connection, which we discuss
further in Appendix C of [46]. These equations are fully
covariant and reduce to the special case of the equations of
motion obtained in [17,18,20,23] when restricted to space-
time metrics that admit a Randers-Papapetrou parametriza-
tion. Furthermore, these equations can be obtained by
projecting the conservation law (11) along the time and
spatial directions using (17) with u#, = 0. We thus have
shown that the “timelike” fluid of [24] is the same as the
Carrollian fluid of [17,18,23], and both are a special case of
the Carrollian fluid derived here.

Dissipation and modes.—In Appendix B of [46] we
show that at order O(d) the class of Carrollian fluids we
introduced is characterized by two hydrostatic coefficients
and ten dissipative coefficients. Here we study the effect of
specific coefficients in the linear spectrum of fluctuations.
We consider flat Carrollian space with 7, = 5,’,, W= =5,
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h,, = 8.6, and h* = &§'8¢ (see Appendix B of [46] for
more details). We then fluctuate the conservation equa-
tions (11) and the boost Ward identity (9) around an
equilibrium state with constant temperature 7, fluid
velocity vj, and Goldstone field 6, such that, e.g.,
0" = 6 + 6¢'. Using plane wave perturbations with fre-

quency @ and wave vector k we find a distinguishing
feature of these Carrollian fluids: the mode structure
strongly depends on whether the equilibrium state carries
nonzero velocity vf). If vf) = 0, the linearized equations only
admit a nontrivial solution if 66 #0, T, =0, and 62" = 0.
Denoting the angle between the momentum ; and 6} by ¢,
this leads to a single linear mode:

1 -
|6o| cos ¢

where we assumed that the value of the entropy density s in
equilibrium s, remains finite and nonvanishing when
Ty — 0; otherwise there is no mode. Interestingly, this
mode is not affected by any of the 12 transport coefficients
entering at order O(9) [72]. This spectrum corresponds to
the branch of solutions with ﬁ” = (0, and hence it is the
expected spectrum arising from the ¢ — O limit of an ideal
relativistic fluid.

On the other hand if v}, # 0 but @), = 0 a more interesting
spectrum can be obtained. For simplicity we only consider
the effect of a bulk viscosity s; and one anisotropic
viscosity s,. Besides a gapped mode, we find for d =2
a single diffusive mode of the form

i

w — U(i)ki = —7 (€ijU6k‘i)2, (25)

where ¢;; is the two-dimensional Levi-Civita symbol, and

[T(z))(TT + |U0‘2(3T0)(Tu + 2|U0|2)(uu)]
SOTO[T(Z)ZTT + |U0|2(2T0)(Tu + |UO|2)(uu)]
2530

I = 52,0

SoTo’

where s  is the value of 55 in equilibrium, ditto s,, and where
we defined y; = (0*P/0TT )y, yyu = (0°P/0i>0i*),), and
Xru = (0*P/0T0u?),,. The left-hand side of (25) is character-
istic of a fluid without boost symmetry [63] while the right-
hand side is typical of a diffusive mode. A salient signature of
Carrollian fluids is that the spectrum is only nontrivial for
states with nonzero equilibrium velocity v{).
Discussion.—We have given a first-principles derivation
of Carrollian fluids based on symmetries, showing that the
spontaneous breaking of boost symmetry plays a crucial
role in defining equilibrium partition functions of Carrollian
field theories in the hydrodynamic regime. It is interesting
to speculate whether this peculiar feature of Carrollian

hydrodynamics can shed light on how to construct well-
defined partition functions using specific microscopic mod-
els of Carrollian field theories along the lines of [24,44].

Different approaches to Carrollian hydrodynamics have ap-
peared in the literature in the past few years [5,17-19,21-24].
Revisiting the ¢ — 0 limit of relativistic fluids we showed
that there are subtleties regarding the interpretation of the
dynamical variables that appear in the limit of the equations
of motion. In particular, we showed that what naively
appeared to be a fluid velocity was in fact a Goldstone field
associated to the spontaneous breaking of boost symmetry.
This allowed us to show that the different approaches are not
only equivalent to each other but also special cases of the
more general Carrollian fluids we introduced here. We
believe it could be interesting to revisit the black hole
membrane paradigm [2] in light of this new understanding.

The effective field theory geometry becomes Aristotelian
once taking the Goldstone field into account. This allowed
us to easily understand the dissipative structure of such
fluids using earlier results [63,73]. The spectrum of exci-
tations for certain classes of equilibrium states shares certain
similarities with the spectrum of excitations of p-wave
fracton superfluids in which the Goldstone field associated
to the spontaneous breaking of dipole symmetry plays an
analogousrole to the boost Goldstone field [45,64,65], albeit
in the Carroll case a nonvanishing fluid velocity is needed.
We believe that this relation can be made clearer if we
consider strong Carrollian geometries as we describe in
Appendix D of [46].

Finally, it would be interesting to consider the addition of
conformal symmetry as this could shine light on thermo-
dynamic properties of holographic dual theories of flat space
gravity. If we impose this symmetry the equation of state for
the branch i, = 0 becomes £ = dP while for the branch
sT + mi* = 0itimposes the relation m = —[(d + 1) /4| P.
In addition, the number of first order transport coefficients
reduces from 12 to 8 (see Appendix B of [46]). It would be
interesting to consider this case in further detail and explore
its connections to flat space holography.
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