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In the hydrodynamic regime, field theories typically have their boost symmetry spontaneously broken
due to the presence of a thermal rest frame although the associated Goldstone field does not acquire
independent dynamics. We show that this is not the case for Carrollian field theories where the boost
Goldstone field plays a central role. This allows us to give a first-principles derivation of the equilibrium
currents and dissipative effects of Carrollian fluids. We also demonstrate that the limit of vanishing speed of
light of relativistic fluids is a special case of this class of Carrollian fluids. Our results shine light on the
thermodynamic properties and thermal partition functions of Carrollian field theories.
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Introduction.—In the past few years Carrollian physics,
emerging by taking the limit of the vanishing speed of light,
has been found useful for describing a variety of phenomena
in contexts ranging from black holes [1–4], cosmology [5,6],
gravity [3,7–16], to hydrodynamics [4,5,17–24]. Concretely,
Carrollian fluids can be used to describe Bjorken flow,which
is relevant for models of the quark-gluon plasma, cf. [23]
(and its conformal generalization, Gubser flow [25]).
Carrollian fluids also model dark energy in inflationary
models [5]. Furthermore,Carrollian symmetries are expected
to have a role to play in exotic phases of matter (e.g., via
Carroll-fracton dualities [26–29] and in superconducting
twisted bilayer graphene [30]).
Many of the properties encountered in this Carrollian

limit are expected to be explained from underlying
quantum field theories with inherent Carrollian sym-
metries. Indeed, if conformal symmetry is present in
addition, such theories would be putative holographic
duals to flat space gravity [31–41]. However, when
attempting to formulate such Carrollian field theories,
several issues have been pointed out including violations
of causality, lack of well-defined thermodynamics, and ill-
defined partition functions [5,24]. Our goal is to show that
the lack of well-defined thermodynamics in Carrollian
field theories is expected in the hydrodynamic regime, but

that this issue can be cured when carefully accounting for
the Carrollian symmetries.
The approach we take is to consider the hydrodynamic

regime of such putative Carrollian field theories and show
how to construct their equilibrium partition function and
near-equilibrium dynamics. In particular, we will show that
there is no proper notion of temperature in Carrollian fluids
unless the Goldstone field of spontaneous broken boost
symmetry is taken into account. This allows us to construct
a well-defined hydrodynamic theory of Carrollian fluids
(similar to framids in the language of [42,43]). In the
process, we show that seemingly different approaches to
Carrollian hydrodynamics previously pursued in the liter-
ature [5,17–24] are in fact equivalent and special cases of
the Carrollian fluids we derive.
The fact that boost symmetry is spontaneously broken

in hydrodynamics is not unexpected. Thermal states
break the boost symmetry spontaneously due to the
presence of a preferred rest frame aligned with the thermal
vector [43,44]. In the context of hydrodynamics the
thermal vector is the combination uμ=T of the unit
normalized fluid velocity uμ and temperature T. On the
other hand, the Goldstone field associated with the break-
ing of boost symmetry does not typically feature in the
low energy spectrum of the theory because it is determined
in terms of the other dynamical fields (see, e.g., [42]). This
is easy to show for relativistic fluids. Consider a (dþ 1)-
dimensional spacetime metric gμν ¼ EA

μE
μ
A where EA

μ is the
set of vielbeins, μ ¼ 0;…; d are spacetime indices, and
A ¼ 0;…; d are internal Lorentz indices. The Goldstone
field associated to spontaneous breaking of Lorentz boost
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symmetry is the vector lA ¼ Λ0
A where Λ0

A is the Lorentz
boost matrix [42], and acquires an expectation value
hlAi ¼ δ0A in the ground state. In thermal equilibrium
we can construct an equilibrium partition function S ¼R
ddþ1x

ffiffiffiffiffiffi−gp
PðT; uμlμÞ where P is the fluid pressure. The

temperature is given by T ¼ T0=jKj with T0 a global
constant temperature, and the fluid velocity is uμ ¼
Kμ=jKj satisfying uμuμ ¼ −1 and defined in terms of
the Killing (thermal) vector Kμ with modulus jKj2 ¼
−gμνKμKν. We furthermore defined lμ ¼ EA

μlA satisfying
lμlμ ¼ −1. The Goldstone equation of motion obtained
from varying the partition function S with respect to
lA is [42]

ðδμν þ lμlνÞ
δS
δlμ

¼ 0: ð1Þ

This equation implies uμ ¼ −lνuνlμ for arbitrary thermo-
dynamic coefficients, and can only be satisfied if lμ ¼ uμ.
Indeed, we see that the dynamics of the Goldstone field lμ is
determined by the dynamics of the fluid velocity and hence
can be removed from the hydrodynamic description. The
same conclusion is reached for the case of spontaneous
breaking of Galilean (Bargmann) boost symmetry [45] (see
also [44]). However, in the case of Carrollian symmetry, as
we will show, the boost Goldstone acquires its own
independent dynamics. Below we introduce Carrollian
geometry and use it to show that, naively, there is no
well-defined notion of temperature.
Carrollian geometry and the lack of temperature.—A

weak Carrollian geometry on a (dþ 1)-dimensional mani-
fold M is defined by a Carrollian structure ðvμ; hμνÞ
consisting of the nowhere-vanishing Carrollian vector field
vμ, and the corank-1 symmetric tensor hμν, the “ruler,”
satisfying hμνvν ¼ 0. It is useful to define inverses ðτμ; hμνÞ
satisfying vμτμ ¼ −1, and τμhμν ¼ 0, as well as the
completeness relation −vμτν þ hμρhρν ¼ δμν . It is also
useful to introduce the spatial vielbeins eaμ and their
inverses eμa which can be used to write hμν ¼ eaμeaν.
Under Carrollian boosts, the inverses transform as

δCτμ ¼ λμ; δChμν¼ 2λρhρðμvνÞ; ð2Þ

corresponding to δCe
μ
a ¼ vμλa, where we have used

that vμλμ ¼ 0. A strong Carrollian geometry is a weak
Carrollian geometry together with an affine connection.
We focus mainly on weak Carrollian geometry but discuss
strong Carrollian geometry in Appendix D of the Supple-
mental Material [46].
Given the Carroll geometry and the existence of a

thermal vector in equilibrium, namely the spacetime
Killing vector kμ, one can proceed as for other (non)-
Lorentzian field theories [54–65] and construct an equi-
librium partition function by identifying the invariant

scalars under all local symmetries which the pressure
P can depend on, as above Eq. (1) for the relativistic case.
A more thorough construction of the partition function will
be given in a later section. Here we note that for non-
relativistic theories the temperature T is given by the scalar
T ¼ T0=ðkμτμÞ with T0 a constant global temperature.
However, in the Carrollian case T is not invariant under
boost transformations since δCðkμτμÞ ¼ kμλμ ≠ 0. Indeed,
there is no well-defined notion of temperature for arbitrary
observers [66]. This is rooted in the fact that it is not
possible to impose a timelike normalization condition on
spacetime vectors such as the fluid velocity since uμτμ is
not boost invariant. This argument does not rely on any
specific model of Carrollian (quantum) field theory since
these statements are valid in the hydrodynamic regime.
This suggests that well-defined thermodynamic limits of
such putative theories are subtle. Below we introduce the
boost Goldstone and use it to show that it can be used to
define an appropriate notion of temperature.
The Carroll boost Goldstone.—We define the boost

Goldstone as the vector θμ which transforms under
Carrollian boosts λμ as

δCθ
μ ¼ −hμνλν; ð3Þ

where λμvμ ¼ 0. This implies that only the spatial part of θμ

is physical, which we can enforce by endowing the
Goldstone with a timelike Stueckelberg symmetry of the
form

δSθ
μ ¼ χvμ; ð4Þ

where χ is an arbitrary function [67]. With this we can build
the boost and Stueckelberg invariant vielbeine

τ̂μ ¼ τμþhμνθν; êμa¼ eμaþvμθμeμa; ð5Þ

which lead to the following invariant ruler:

ĥμν ¼ δabêμaêνb ¼ hμνþvμvνðθ2þ2τρθ
ρÞþ2vðμθνÞ; ð6Þ

where θ2 ¼ hμνθμθν. Together with vμ and hμν, these form
an Aristotelian structure [68],

ĥμντ̂ν¼0; vμτ̂μ¼−1; ĥμρhρν¼δμνþvμτ̂ν≕ĥμν ; ð7Þ

that is partly dynamical due to the Goldstone θμ. The low-
energy effective action for the Carrollian boost Goldstone is
a two-derivative Hořava–Lifshitz type action as we show in
Appendix A of [46]. If coupled to Carrollian gravity the
resultant action would be derivable from the limit of the
vanishing speed of light of the Einstein-Aether theory [69].
Before showing how the Goldstone allows one to define a
notion of temperature, we first discuss the currents and
conservation laws.
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Currents and conservation laws.—We now consider an
arbitrary fluid functional (or free energy) S½τμ; hμν; θν� for a
Carrollian fluid with spontaneously broken boosts. The
variation of this functional is

δS ¼
Z

ddþ1xe
h
−Tμδτμ þ

1

2
T μνδhμν − Kμδθ

μ
i
; ð8Þ

where Tμ is the energy current, T μν the stress-momentum
tensor, and Kμ the response to the Goldstone field. In
particular Kμ ¼ 0 gives the analogous equation of motion
for the Goldstone as in (1). The measure is defined as
e ¼ detðτμ; eaμÞ ¼ detðτ̂μ; eaμÞ. The Ward identities for the
Stueckelberg and boost symmetries are, respectively,

vμKμ ¼ 0; Tνhνμ ¼Kμ: ð9Þ

The equation of motion for the Goldstone, Kμ ¼ 0, imposes
the condition Tνhνμ ¼ 0. In other words, the boost Ward
identity now becomes the equation of motion for the
Goldstone. The momentum-stress tensor is not boost invari-
ant. In fact, computing the second variation, which must
vanish δCðδCSÞ ¼ 0, we find that δCTμ ¼ δCKμ ¼ 0 and

δCT μν ¼ 2TðμhνÞρλρ. The associated energy-momentum
tensor (EMT) Tμ

ν ¼ −τνTμ þ T μρhρν is also not boost
invariant and transforms as

δCT
μ
ν ¼ Kνhμρλρ; ð10Þ

where we used (9). Doing the same for the Stueckelberg
symmetry, the condition δSðδSSÞ ¼ 0 implies that δST

μ
ν ¼

−χvμKν. Hence, the EMT is both boost and Stueckelberg
invariant if Kμ ¼ 0. The diffeomorphism Ward identity
reads as

e−1∂μðeTμ
ρÞ þ Tμ

∂ρτμ −
1

2
T μν

∂ρhμν ¼ 0; ð11Þ

wherewe used thatKμ ¼ 0. It is possible to obtainmanifestly
boost invariant currents, including the EMT, by formulating
the action in terms of the effective Aristotelian structure (5),
as we show in Appendix B of [46].
Equilibrium partition function and Carrollian fluids.—

To derive the currents of Carrollian fluids, we consider the
equilibrium partition function construction. An equilibrium
Carrollian background consists of a set of symmetry
parameters K ¼ ðkμ; λμK; χKÞ, where kμ is a Killing vector
and λμK is a boost symmetry parameter, while χK is a
Stueckelberg symmetry parameter. The various structures
transform according to

δKvμ ¼ £kvμ ¼ 0; δKτμ ¼ £kτμþλKμ ¼ 0;

δKhμν¼ £khμν ¼ 0;

δKhμν¼ £khμνþ2λKρ hρðμvνÞ ¼ 0;

δKθ
μ ¼ £kθμ−hμνλKμ þχKvμ ¼ 0: ð12Þ

The boost and Stueckelberg symmetry parameters trans-
form as

δλKμ ¼ £ξλKμ −£kλμ; δχK ¼ £ξχK −£kχ; ð13Þ

under infinitesimal diffeomorphisms generated by ξμ,
infinitesimal Carrollian boosts λμ and Stueckelberg trans-
formations χ. As we show in Appendix B of [46], λKμ and
χK will not play a role in the effective fluid description.
Before enumerating the possible invariant scalars, we

must provide a gradient ordering. As usual we take the
geometry itself to be of ideal order, that is, τμ ∼ hμν ∼
vμ ∼ hμν ∼Oð1Þ. Since θμ enters the definition of τ̂μ it must
have the same ordering, θμ ∼Oð1Þ. Gradients of these
structures areOð∂Þ and hence suppressed in a hydrodynamic
expansion. Given this gradient scheme the only two ideal
order invariants are

T ¼ T0=τ̂μkμ; u⃗2 ¼ hμνuμuν; ð14Þ

where uμ ¼ kμ=τ̂ρkρ, which satisfies τ̂μuμ ¼ 1. We note
that we can now define a notion of temperature T that is
invariant for all observers. The scalar u⃗2 is the modulus of
the spatial fluid velocity. Generically the fluid velocity can
be decomposed as uμ ¼ −vμ þ u⃗μ, where u⃗μ ¼ ĥμνuν with
ĥμν ≔ ĥμρhρν. We furthermore define u⃗μ ¼ hμνuν ¼ hμνu⃗ν,
such that u⃗μ ¼ ĥμνuν, but u⃗μ ≠ hμνu⃗ν. Note in particular
that uμ decomposes as follows relative to the Carrollian
structure:

uμ ¼ −vμð1 − θνu⃗νÞ þ hμνuν: ð15Þ

The hydrostatic partition function at ideal order is given by
S¼R

ddþ1xePðT;u⃗ 2Þ. Using the general actionvariation (8)
together with the “variational calculi” δhμν ¼ 2vðμhνÞρδτρ −
hμρhνσδhρσ and δvμ ¼ vμvνδτν − hμνvρδhρν we obtain the
ideal order currents:

Tμ
ð0Þ ¼ Pvμ þ sTuμ þmu⃗2uμ;

T μν
ð0Þ ¼ Phμν þmuμuν − 2ðsT þmu⃗2ÞuðμθνÞ;

Kð0Þμ ¼ ðsT þmu⃗2Þu⃗μ; ð16Þ

where the subscript (0) indicates that the currents are of ideal
orderOð1Þ and the entropy s andmass densitym are defined
via dP ¼ sdT þmdu⃗2. The associated EMT is given by
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Tμ
ð0Þν ¼ Pδμν þmuμu⃗ν − ðsT þmu⃗2Þðuμτ̂ν þ θμu⃗νÞ; ð17Þ

which transforms as in (10).
The equation of motion for the Goldstone Kð0Þμ ¼ 0,

which is equivalent to the boost Ward identity, gives a
constraint on the dynamics

ðsT þmu⃗2Þu⃗μ ¼ 0; ð18Þ

and can be viewed as a framid condition for Carrollian fluids.
Defining the energy density as E ¼ τ̂μT

μ
ð0Þ, the Goldstone

equation has two branches of solutions: either E þ P ¼
sT þmu⃗2 ¼ 0 or u⃗μ ¼ 0. Neither of them allows for the
elimination of the Goldstone θμ from the low-energy
description. The constraint (18) was derived in equilibrium,
but we show in Appendix B of [46] that it also holds off
equilibrium, although it receives corrections due to dissipa-
tive effects. As such, together with (11), it provides the ideal
order dynamics for Carrollian fluids. Equations (16)–(18) are
a central result of this work as they provide a well-defined
notion of Carrollian fluids. Below we show that the c → 0
limit of relativistic fluids gives rise to a Carrollian fluid
with u⃗μ ¼ 0.
The c → 0 limit of a relativistic fluid.—The c → 0 limit

of relativistic fluids was considered in [17,18,20] (see
also [23]) for a specific class of metrics. The same limit
was taken in [24], where it was referred to as a “timelike
fluid.” Here, we demonstrate that these notions coincide and
correspond to the special case of the Carrollian fluid we
introduced abovewith u⃗μ ¼ 0, and that the emergence of the
Goldstone can be understood from the ultralocal expansion
of the Lorentzian geometry. The relativistic EMT is given by

Tμ
ν ¼

Ê þ P̂
c2

UμUν þ P̂δμν ; ð19Þ

where UμUνgμν ¼ −c2, and where the “hat” indicates
relativistic thermodynamic quantities. To take the limit,
we first consider the metric and its inverse in “pre-ultra-
local (PUL) variables” [3]

gμν ¼−c2TμTνþΠμν; gμν ¼−
1

c2
VμVνþΠμν; ð20Þ

where TμVμ ¼ −1, TμΠμν ¼ VμΠμν ¼ 0, ΠμρΠρν ¼
δμν þ VμTν. The leading order components of the PUL
variables correspond to the fields that make up the
Carrollian structure, e.g., Vμ ¼ vμ þOðc2Þ. We write the
expansion of the relativistic fluid velocity relative to the PUL
variables as

Uμ ¼ −Vμ − c2uμ;

for some uμ. Crucially, Uμ is invariant under local Lorentz
boosts while δCVμ ¼ c2hμνλν þOðc4Þ, implying that

δCuμ ¼ −hμνλν þOðc2Þ. This shows that uμ cannot be
identified with a fluid velocity in the Carrollian limit.
Indeed, we may identify the spatial part of the leading order
term in the c2 expansion of uμ with the spatial part of the
boost Goldstone

Πμνuν ¼ hμνθν þOðc2Þ≕ θ⃗μ þOðc2Þ: ð21Þ
Using this, together with Uμ ¼ c2τ̂μ þOðc4Þ the EMT
becomes

Tμ
ν ¼ ðE þ PÞvμτ̂ν þ Pδμν þOðc2Þ; ð22Þ

where E andP are the leading order contributions of Ê and P̂,
respectively, satisfying the Euler relation E þ P ¼ sT. This
is exactly the “timelike” fluid of [24], corresponding to
the u⃗μ ¼ 0 branch of the Carrollian fluid we described
above [70].
It is instructive to take the c → 0 limit of the relativistic

equation of motion b∇μT
μ
ν ¼ 0, where b∇ is the Levi-Civita

connection of the spacetime metric gμν. Deferring the
details to Appendix C of [46], we note here that the
equations of motion in the limit c → 0 can be expressed as

vμ∂μE ¼ ðE þ PÞK;

hμν∂νP ¼ −φ̃μðE þ PÞ þ ðE þ PÞKhμνθ⃗ν

− hμνvρe∇ρ½ðE þ PÞθ⃗ν�; ð23Þ

where K ¼ hμνKμν ≔ − 1
2
hμν£vhμν is the trace of the

intrinsic torsion of the Carrollian structure [71], and is
sometimes referred to as the “Carrollian expansion,” while
φ̃λ ¼ 2hλμvν∂½ντμ� − hλμhνσθ⃗σKμν. The first term in φ̃λ is
sometimes referred to as the “Carrollian acceleration,”while
the second term comes from the c2 expansion of the Levi-

Civita connection. The covariant derivative e∇ is a Carroll
compatible connection that arises in theOð1Þ piece of the c2
expansion of the Levi-Civita connection, which we discuss
further in Appendix C of [46]. These equations are fully
covariant and reduce to the special case of the equations of
motion obtained in [17,18,20,23] when restricted to space-
time metrics that admit a Randers-Papapetrou parametriza-
tion. Furthermore, these equations can be obtained by
projecting the conservation law (11) along the time and
spatial directions using (17) with u⃗μ ¼ 0. We thus have
shown that the “timelike” fluid of [24] is the same as the
Carrollian fluid of [17,18,23], and both are a special case of
the Carrollian fluid derived here.
Dissipation and modes.—In Appendix B of [46] we

show that at order Oð∂Þ the class of Carrollian fluids we
introduced is characterized by two hydrostatic coefficients
and ten dissipative coefficients. Here we study the effect of
specific coefficients in the linear spectrum of fluctuations.
We consider flat Carrollian space with τμ ¼ δtμ, vμ ¼ −δμt ,
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hμν ¼ δiμδ
i
ν, and hμν ¼ δμi δ

ν
i (see Appendix B of [46] for

more details). We then fluctuate the conservation equa-
tions (11) and the boost Ward identity (9) around an
equilibrium state with constant temperature T0, fluid
velocity vi0, and Goldstone field θi0, such that, e.g.,
θi ¼ θi0 þ δθi. Using plane wave perturbations with fre-

quency ω and wave vector k⃗ we find a distinguishing
feature of these Carrollian fluids: the mode structure
strongly depends on whether the equilibrium state carries
nonzero velocity vi0. If v

i
0 ¼ 0, the linearized equations only

admit a nontrivial solution if θi0 ≠ 0, T0 ¼ 0, and δvi ¼ 0.
Denoting the angle between the momentum ki and θi0 by ϕ,
this leads to a single linear mode:

ω ¼ −
1

jθ⃗0j cosϕ
jk⃗j; ð24Þ

where we assumed that the value of the entropy density s in
equilibrium s0 remains finite and nonvanishing when
T0 → 0; otherwise there is no mode. Interestingly, this
mode is not affected by any of the 12 transport coefficients
entering at order Oð∂Þ [72]. This spectrum corresponds to
the branch of solutions with u⃗μ ¼ 0, and hence it is the
expected spectrum arising from the c → 0 limit of an ideal
relativistic fluid.
On the other hand if vi0 ≠ 0 but θi0 ¼ 0 a more interesting

spectrum can be obtained. For simplicity we only consider
the effect of a bulk viscosity s3 and one anisotropic
viscosity s2. Besides a gapped mode, we find for d ¼ 2
a single diffusive mode of the form

ω − vi0ki ¼ −
iΓ1

2
ðεijvi0kjÞ2; ð25Þ

where εij is the two-dimensional Levi-Civita symbol, and

Γ1 ¼ s2;0
½T2

0χTT þ jv0j2ð3T0χTu þ 2jv0j2χuuÞ�
s0T0½T2

0χTT þ jv0j2ð2T0χTu þ jv0j2χuuÞ�
þ 2s3;0
s0T0

;

where s3;0 is thevalueof s3 in equilibrium, ditto s2, andwhere
we defined χTT ¼ð∂2P=∂T∂TÞ0, χuu ¼ð∂2P=∂u⃗2∂u⃗2Þ0, and
χTu ¼ ð∂2P=∂T∂u⃗2Þ0. The left-hand side of (25) is character-
istic of a fluid without boost symmetry [63] while the right-
hand side is typical of a diffusivemode.A salient signature of
Carrollian fluids is that the spectrum is only nontrivial for
states with nonzero equilibrium velocity vi0.
Discussion.—We have given a first-principles derivation

of Carrollian fluids based on symmetries, showing that the
spontaneous breaking of boost symmetry plays a crucial
role in defining equilibrium partition functions of Carrollian
field theories in the hydrodynamic regime. It is interesting
to speculate whether this peculiar feature of Carrollian

hydrodynamics can shed light on how to construct well-
defined partition functions using specific microscopic mod-
els of Carrollian field theories along the lines of [24,44].
Different approaches toCarrollian hydrodynamics have ap-

peared in the literature in the past few years [5,17–19,21–24].
Revisiting the c → 0 limit of relativistic fluids we showed
that there are subtleties regarding the interpretation of the
dynamical variables that appear in the limit of the equations
of motion. In particular, we showed that what naively
appeared to be a fluid velocity was in fact a Goldstone field
associated to the spontaneous breaking of boost symmetry.
This allowed us to show that the different approaches are not
only equivalent to each other but also special cases of the
more general Carrollian fluids we introduced here. We
believe it could be interesting to revisit the black hole
membrane paradigm [2] in light of this new understanding.
The effective field theory geometry becomes Aristotelian

once taking the Goldstone field into account. This allowed
us to easily understand the dissipative structure of such
fluids using earlier results [63,73]. The spectrum of exci-
tations for certain classes of equilibrium states shares certain
similarities with the spectrum of excitations of p-wave
fracton superfluids in which the Goldstone field associated
to the spontaneous breaking of dipole symmetry plays an
analogous role to the boostGoldstone field [45,64,65], albeit
in the Carroll case a nonvanishing fluid velocity is needed.
We believe that this relation can be made clearer if we
consider strong Carrollian geometries as we describe in
Appendix D of [46].
Finally, it would be interesting to consider the addition of

conformal symmetry as this could shine light on thermo-
dynamic properties of holographic dual theories of flat space
gravity. If we impose this symmetry the equation of state for
the branch u⃗μ ¼ 0 becomes E ¼ dP while for the branch
sT þmu⃗2 ¼ 0 it imposes the relationm ¼ −½ðdþ 1Þ=u⃗2�P.
In addition, the number of first order transport coefficients
reduces from 12 to 8 (see Appendix B of [46]). It would be
interesting to consider this case in further detail and explore
its connections to flat space holography.
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