Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Chemical synthesis and materials discovery

Abstract

Functional materials impact every area of our lives, from electronic and computing devices to transportation and health. Here we examine the relationship between synthetic discoveries and the scientific breakthroughs that they have enabled. By tracing the development of some important examples, we explore how and why the materials were initially synthesized and how their utility was subsequently recognized. Three common pathways to materials breakthroughs are identified. In a small number of cases, such as the aluminosilicate zeolite catalyst ZSM-5, an important advance is made by using design principles based on earlier work. There are also rare cases of breakthroughs that are serendipitous, such as the buckyball and Teflon. Most commonly, however, the breakthrough repurposes a compound that is already known and was often made out of curiosity or for a different application. Typically, the synthetic discovery precedes the discovery of functionality by many decades; key examples include conducting polymers, topological insulators and electrodes for lithium-ion batteries.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Depiction of some of the functional materials discussed in this Perspective, along with their main applications.
Fig. 2: Timelines for some important functional materials with delayed impact.

Similar content being viewed by others

References

  1. Kokotailo, G. T., Lawton, S. L. & Olson, D. H. Structure of synthetic zeolite ZSM-5. Nature 272, 437–438 (1978).

    Article  CAS  Google Scholar 

  2. Wilson, S. T., Lok, B. M., Messina, C. A., Cannon, T. R. & Flanigen, E. M. Aluminophosphate molecular-sieves—a new class of microporous crystalline inorganic solid. J. Am. Chem. Soc. 104, 1146–1147 (1982).

    Article  CAS  Google Scholar 

  3. Capaca, E. et al. Synthesis and structure of a 22 × 12 × 12 extra-large pore zeolite ITQ-56 determined by 3D electron diffraction. J. Am. Chem. Soc. 143, 8713–8719 (2021).

    Article  CAS  Google Scholar 

  4. Kresge, C. T., Leonowicz, M. E. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  CAS  Google Scholar 

  5. Wudl, F., Smith, G. M. & Hufnagel, E. J. Bis-1,3 dithiolium chloride: an unusually stable organic radical cation. Chem. Commun. 1970, 1453–1454 (1970).

    Article  Google Scholar 

  6. Wudl, F. From organic metals to superconductors: managing conduction electrons in organic solids. Acc. Chem. Res. 17, 227–232 (1984).

    Article  CAS  Google Scholar 

  7. Martín, N. Tetrathiafulvalene: the advent of organic metals. Chem. Commun. 49, 7025–7027 (2013).

    Article  CAS  Google Scholar 

  8. Haywang, G. & Jonas, F. Poly(alkylenedioxythiophene)s—new, very stable conducting polymers. Adv. Mater. 4, 116–118 (1992).

    Article  Google Scholar 

  9. Jonas, F. & Schrader, L. Conductive modifications of polymers with polypyrroles and polythiophenes. Synth. Met. 41–43, 831–836 (1991).

    Article  Google Scholar 

  10. Kim, G. H., Shao, L., Zhang, K. & Pipe, K. P. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12, 719–723 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Worfolk, B. J. et al. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl Acad. Sci. USA 112, 14138–14143 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Plunkett, R. J. in High Performance Polymers, their Origin and Development (eds Seymour, R. B. & Kirshenbaum, G. S.) 261–266 (Springer, 1986).

  13. Sicard, A. J. & Baker, R. T. Fluorocarbon refrigerants and their syntheses: past to present. Chem. Rev. 120, 9164–9303 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Jones, D. E. H. Hollow molecules. New Sci. 32, 245 (1966).

    Google Scholar 

  15. Osawa, E. The evolution of the football structure for the C60 molecule: a retrospective. Phil. Trans. R. Soc. A 343, 1–8 (1993).

    CAS  Google Scholar 

  16. Rohlfing, E. A., Cox, D. M. & Kaldor, A. Production and characterization of supersonic carbon cluster beams. J. Chem. Phys. 81, 3322–3330 (1984).

    Article  CAS  Google Scholar 

  17. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–164 (1985).

    Article  CAS  Google Scholar 

  18. Kratschmer, W., Lamb, L. D., Fostirapoulos, K. & Huffman, D. R. Solid C60: a new form of carbon. Nature 347, 354–358 (1990).

    Article  Google Scholar 

  19. Hebard, A. F. et al. Superconductivity at 18 K in potassium-doped C60. Nature 350, 600–601 (1991).

    Article  CAS  Google Scholar 

  20. Campbell, E. K., Holz, M., Gerlich, D. & Maier, J. P. Laboratory confirmation of C60+ as carrier of two diffuse interstellar bands. Nature 523, 322–323 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Rasmussen, S. C. Conjugated polymers and conducting polymers: the first 150 years. ChemPlusChem 85, 1412–1429 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Natta, G., Mazzanti, G. & Corradini, P. Stereospecific polymerization of acetylene. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Na. 25, 3–12 (1958).

    CAS  Google Scholar 

  23. Shirakawa, H., Lewis, E. J., MacDiarmid, A. J., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. J. Chem. Soc. 1977, 578–580 (1977).

    Article  Google Scholar 

  24. Ito, T., Shirakawa, H. & Ikeda, S. Simultaneous polymerization and formation of polyacetylene film on the surface of a concentrated soluble Ziegler-type catalyst solution. J. Poly. Sci. Polym. Chem. Ed. 12, 11–20 (1974).

    Article  CAS  Google Scholar 

  25. Burroughes, J. H. et al. Light emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  CAS  Google Scholar 

  26. Wudl, F. & Srdanov, G. Conducting polymer formed of poly(2-methoxy-5-(2′-ethylhexyloxy)-p-phenylenevinylene). US patent 5,189,136 (1993).

  27. Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron transfer from conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Perrot, S., Pawla, F., Pechev, S., Hadziioannou, G. & Fleury, G. PEDOT:Tos electronic and thermoelectric properties: lessons from two polymerization processes. J. Mater. Chem. C 9, 7417–7425 (2021).

    Article  CAS  Google Scholar 

  29. Lee, G.-H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149–165 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Weber, D. CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur/CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure. Z. Naturforsch. B 33, 1443–1445 (1978).

    Article  Google Scholar 

  31. Wasylishen, R. E., Knop, O. & Macdonald, J. B. Cation rotation in methylammonium lead halides. Solid State Commun. 56, 581–582 (1985).

    Article  CAS  Google Scholar 

  32. Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987).

    Article  CAS  Google Scholar 

  33. Yamada, K., Kawaguchi, H. & Matsui, T. Bull. Chem. Soc. Jpn 63, 2521–2525 (1990).

    Article  CAS  Google Scholar 

  34. Koutselas, I. B., Ducasse, L. & Papavassiliou, G. C. Electronic properties of three- and low-dimensional semiconducting materials with Pb halide and Sn halide units. J. Phys. Condens. Matter. 8, 1217–1227 (1996).

    Article  CAS  Google Scholar 

  35. Mitzi, D. B., Feild, C. A., Harrison, W. T. A. & Guloy, A. M. Conducting tin halides with a layered organic-based perovskite structure. Nature 369, 467–469 (1994).

    Article  CAS  Google Scholar 

  36. Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Al-Ashourim, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  CAS  Google Scholar 

  40. Wei, F. et al. Lead-free hybrid double perovskite (CH3NH3)2AgBiBr6: synthesis, electronic structure, optical and mechanical properties. Chem. Mater. 29, 1089–1094 (2017).

    Article  CAS  Google Scholar 

  41. Vishnoi, P., Seshadri, R. & Cheetham, A. K. Why are double perovskites iodides so rare? J. Phys. Chem. C 125, 11756–11764 (2021).

    Article  CAS  Google Scholar 

  42. Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Bernevig, B. A., Hughes, T. A. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Lange, P. W. Ein Vergleich zwischen Bi2Te3 und Bi2Te2S. Naturwissenschaften 27, 133–135 (1939).

    Article  CAS  Google Scholar 

  46. Mönkmeyer, K. Über Tellur-Wismut. Z. Anorg. Chem. 46, 415–422 (1905).

    Article  Google Scholar 

  47. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys 5, 438–442 (2009).

    Article  CAS  Google Scholar 

  48. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2006).

    Article  CAS  Google Scholar 

  49. Boller, H. & Parthé, E. The transposition structure of NbAs and of similar monophosphides and arsenides of niobium and tantalum. Acta Crystallogr. 16, 1095–1101 (1963).

    Article  CAS  Google Scholar 

  50. Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  51. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  52. Huang, S.-M. et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Johnston, W. D., Heikes, R. R. & Sestrich, D. The preparation, crystallography and magnetic properties of the LixCo(1 − x)O system. J. Phys. Chem. Solids 7, 1–13 (1958).

    Article  CAS  Google Scholar 

  54. Whittingham, M. S. The role of ternary phases in cathode reactions. J. Electrochem. Soc. 123, 315–320 (1976).

    Article  CAS  Google Scholar 

  55. Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0 < x < 1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

    Article  CAS  Google Scholar 

  56. Nishizawa, M., Yamamura, S., Itoh, T. & Uchida, I. Irreversible conductivity change of Li1-xCoO2 on electrochemical lithium insertion/extraction, desirable for battery applications. Chem. Commun. 1998, 1631–1632 (1998).

    Article  Google Scholar 

  57. Chebiam, R. V., Kannan, A. M., Prado, F. & Manthiram, A. Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries. Electrochem. Commun. 3, 624–627 (2001).

    Article  CAS  Google Scholar 

  58. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, W., Erickson, E. & Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–24 (2020).

    Article  CAS  Google Scholar 

  60. Griffith, K. J. et al. Titanium niobium oxide: from discovery to application in fast-charging lithium-ion batteries. Chem. Mater. 33, 4–18 (2021).

    Article  CAS  Google Scholar 

  61. Roth, R. S. & Coughanour, L. W. Phase equilibrium relations in the systems titania-niobia and zirconia-niobia. J. Res. Natl Bur. Stand. 55, 209–213 (1955).

    Article  CAS  Google Scholar 

  62. Han, J.-T. & Goodenough, J. B. 3-V full cell performance of anode framework TiNb2O7/spinel LiNi0.5Mn1.5O4. Chem. Mater. 23, 3404–3407 (2011).

    Article  CAS  Google Scholar 

  63. Danielson, E. et al. A combinatorial approach to the discovery and optimization of luminescent materials. Nature 389, 944–948 (1997).

    Article  CAS  Google Scholar 

  64. Jandeleit, B., Schaefer, D. J., Powers, T. S., Turner, H. W. & Weinberg, W. H. Combinatorial materials science and catalysis. Angew. Chem. Int. Ed. 38, 2495–2532 (1999).

    Article  Google Scholar 

  65. Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Corey, E. J. & Wipke, W. T. Computer-assisted design of complex organic syntheses. Science 166, 178–192 (1969).

    Article  CAS  PubMed  Google Scholar 

  67. Davies, I. W. The digitization of organic synthesis. Nature 570, 175–181 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Kim, E. et al. Materials synthesis insights from scientific literature via text extraction and machine learning. Chem. Mater. 29, 9436–9444 (2017).

    Article  CAS  Google Scholar 

  70. Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Schön, J. C. & Jansen, M. First step towards planning of syntheses in solid-state chemistry: determination of promising structure candidates by global optimization. Angew. Chem. Int. Ed. 35, 1286–1304 (1996).

    Article  Google Scholar 

  72. Chen, B.-R. et al. Understanding crystallization pathways leading to manganese oxide polymorph formation. Nat. Commun. 9, 2553 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Jóhannesson, G. H. et al. Combined electronic structure and evolutionary search approach to materials design. Phys. Rev. Lett. 88, 255506 (2002).

    Article  PubMed  CAS  Google Scholar 

  74. Hautier, G., Fischer, C. C., Jain, A., Mueller, T. & Ceder, G. Finding nature’s missing ternary oxide compounds using machine learning and density functional theory. Chem. Mater. 22, 3762–3767 (2010).

    Article  CAS  Google Scholar 

  75. Oliynyk, A. O. et al. High-throughput machine-learning-driven synthesis of full-Heusler compounds. Chem. Mater. 28, 7324–7331 (2016).

    Article  CAS  Google Scholar 

  76. Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The Cambridge structural database. Acta Crystallogr. B 72, 171–179 (2016).

    Article  CAS  Google Scholar 

  78. Bergerhoff, G., Hundt, R., Sievers, R. & Brown, I. D. The inorganic crystal structure data base. J. Chem. Inf. Comput. Sci. 23, 66–69 (1983).

    Article  CAS  Google Scholar 

  79. Chung, Y. G. et al. Computation-ready, experimental metal–organic frameworks: a tool to enable high-throughput screening of nanoporous crystals. Chem. Mater. 26, 6185–6192 (2014).

    Article  CAS  Google Scholar 

  80. Jain, A. et al. Commentary. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  CAS  Google Scholar 

  81. Ortiz, B. R. et al. New Kagome prototype materials: discovery of KV3Sb5, RbV3Sb5 and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).

    Article  CAS  Google Scholar 

  82. Ortiz, B. R. et al. CsV3Sb5: a Z2 topological Kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Sun, S. et al. Synthesis, crystal structure, and properties of a perovskite-related bismuth phase, (NH4)3Bi2I9. APL Mater. 4, 031101 (2016).

    Article  CAS  Google Scholar 

  84. Zhuang, R. et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photon. 13, 602–608 (2019).

    Article  CAS  Google Scholar 

  85. Hagman, L. & Kierkegaard, P. The crystal structure of NaMeIV2(PO4)3; MeIV = Ge, Ti, Zr. Acta Chem. Scand. 22, 1822–1832 (1968).

    Article  CAS  Google Scholar 

  86. Chen, S. et al. Challenges and perspectives for NaSICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 29, 1700431 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.K.C. thanks the Ras al Khaimah Centre for Advanced Materials for financial support. R.S. gratefully acknowledges the US Department of Energy, Office of Science, Basic Energy Sciences, for support under award no. DE-SC-0012541.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony K. Cheetham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Linda Nazar, Michael Hayward and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

References for Fig. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheetham, A.K., Seshadri, R. & Wudl, F. Chemical synthesis and materials discovery. Nat. Synth 1, 514–520 (2022). https://doi.org/10.1038/s44160-022-00096-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00096-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing