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Natural and manmade complex systems are comprised of different elementary units, being either system
components or diverse subsystems as in the case of networked systems. These units interact with each other
in a possibly nonlinear way, which results in a complex dynamics that is generally dissipative and
nonstationary. One of the challenges in the modeling of such systems is the identification of not only
pairwise but, more importantly, higher-order interactions, together with their directions and strengths from
measured multivariate time series. Here, we propose a novel data-driven approach for characterizing
interactions of different orders. Our approach is based on solving a set of linear equations constructed from
Kramers-Moyal coefficients derived from statistical moments of N -dimensional multivariate time series.
We demonstrate the substantial potential for applications by a data-driven reconstruction of interactions in
various multidimensional and networked dynamical systems.
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I. INTRODUCTION

Complex systems are characterized by nonlinear inter-
actions between their numerous components as well as
by their ability to form different coherent dynamical
behaviors and transitions between them. In addition,
any natural or manmade system is subject to noise, which
is inevitable and results from interactions with the
environment. An appropriate description of the temporal
behavior of complex systems is given by a multidimen-
sional stochastic dynamics, which contains deterministic
processes together with the impact of fluctuations. All the
complex systems considered in this work share the

property that they can be considered as interaction net-
works, such as, e.g., food webs [1,2] or mutualistic plant-
pollinator networks in ecology [3], opinion formation
processes in social science [4], spin glasses in physics [5],
interactions between brain regions in neuroscience [6],
spreading of diseases in epidemiology [7], or metabolic
networks in biochemistry [8].
To explain the concepts, we use the example of a food

web [9]. Many complex networks, such as the ones
mentioned above, comprise a large number of components,
e.g., species in an ecosystem that are interacting in a
complex manner: predator-prey interactions or competition
in food webs or mutualistic interactions in plant-pollinator
networks [10]. The species are the nodes of the network,
while interactions, which are, in general, nonlinear, make
up the links to form the topology of the network. In the
simplest case, interactions can be pairwise, such as, e.g., in
a food web, where the direction of an interaction is given by
the fact “who eats whom” and the strength of an interaction
is given by the consumption rate.
In many systems, there are also higher-order interactions,

like the chemical reactions that form the links in a
metabolic network. These interactions can involve several
components, such as different chemical substances (nodes)
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interacting in a single chemical reaction. Such complex
interaction networks subject to noise are, in general,
formulated as sets of stochastic differential equations
describing the dynamics in terms of nonlinear functions
Fðx; tÞ and Gðx; tÞ of the N -dimensional state vector xðtÞ
[11–16] containing all the components:

ẋ ¼ Fðx; tÞ þGðx; tÞηðtÞ: ð1Þ

In theoretical modeling of complex systems with stochastic
dynamical equation (1), two cases can be distinguished:

Case 1: The function Fðx; tÞ usually consists of different
terms that are based on first principles in physics or on
appropriate assumptions about the functional forms of
the physical, chemical, and/or biological processes
involved. This function stands for the deterministic
part of the dynamics, while Gðx; tÞ takes into account
additive or multiplicative stochastic fluctuations. In
addition, ηjðtÞ, j∈ f1;…;N g represent independent
Gaussian white noise with unit intensity, i.e.,
hηkðt1Þηjðt2Þi ¼ hkjδðt2 − t1Þ, where hkj ¼ δk;j. See
below for the case of correlated noise. Interactions
between the components xi and xj of the complex
system can occur in the deterministic part Fðx; tÞ and/
or in the stochastic part Gðx; tÞ of the dynamics.
In general, the functions Fðx; tÞ depend on control

parameters, which, in a specific application, can be
estimated using an optimization procedure based on
observational data [14–17]. Other approaches to
identify the function Fðx; tÞ are based on combining
different nonlinear terms (with an appropriate choice
of basis functions) and finding an appropriate formu-
lation with the help of Bayesian inference or maxi-
mum likelihood methods [18–21].

Case 2: For many phenomena in nature, it is not clear
how an appropriate mathematical formulation of the
interactions should look, but there is plenty of ob-
servational data available to reconstruct the dynamics
and validate a data-driven model. The big challenge is
how to estimate the functions Fðx; tÞ and Gðx; tÞ to
reveal the strength, direction, and functional form of
interactions between the different components from
measured multivariate time series. So far, methods like
Langevin modeling with an estimation of Kramers-
Moyal (KM) coefficients have been employed to
construct a dynamical equation for various one- and
two-dimensional time series [14–16]. However, com-
plex systems in nature are, in general, composed of
many, say N , interacting components, requiring a
multivariate reconstruction to reveal not only pairwise
but also higher-order interactions.
In more general terms, the components of a com-

plex network can be understood as subsystems that are
represented by a suitable observable that can be
measured and that acts like a state variable xiðtÞ.

Thus, the model equations need not be known.
Examples of those kinds of networks are power grids
[22] and neuronal networks [23], among others.
Different linear and nonlinear methods have been

established that allow a data-driven assessment of
interaction properties (e.g., strength, direction, and
functional form) and inference of networks from
empirical data [24–45]; see also Refs. [46–50] for
recent developments in the field. Most of these ap-
proaches are based on pairwise interactions only and,
moreover, require a prescribed threshold to decide
whether the existence of an interaction (including
detection of direction and characterization of interac-
tionweight in weighted networks) is established or not.

Our goal is towork out a data-driven approach that combines
the knowledge of designing Fðx; tÞ and Gðx; tÞ upon
observational data using an expansion of Kramers-Moyal
coefficients with ideas to identify pairwise and, more
importantly, higher-order interactions. In fact, our plan is
twofold.
Recipe (1): We assume that the mathematical functions

Fðx; tÞ andGðx; tÞ, i.e., the functional form of interactions,
are known from basic principles. We estimate their param-
eters within nonpolynomial or polynomial functions to
determine the strength of pairwise and higher-order inter-
actions from time series corresponding to Case 1.
Recipe (2): We assume that we do not have any

knowledge about the functions Fðx; tÞ and Gðx; tÞ, and
we reconstruct the pairwise and higher-order interactions
from time series corresponding to Case 2. In this latter case,
we have to estimate not only the strength of an interaction
but also its direction.
To demonstrate our approach and to showcase its

versatility for field applications, we investigate time series
that we derive from simulations of various high-dimen-
sional model systems with preset higher-order interactions.
Model systems are from different disciplines of science and
comprise, among others, a population growth model
(ecology), a cancer growth model (medicine), and a phase
oscillator network model (physics/engineering). We con-
taminate these time series with different types of noise to
mimic observational errors.

II. PAIRWISE AND HIGHER-ORDER
INTERACTIONS

The starting point of our work is the fact that pairwise
interactions between different components of anN -dimen-
sional complex system can be described by a linear set of
differential equations:

d
dt

xðtÞ ¼ AxðtÞ; ð2Þ

where xðtÞ∈RN and A is an N ×N matrix. The state
variable xðtÞ can be the amount of traffic that passes
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through a node on a communication network, voltage
changes in measured time series of brain dynamics, particle
position, concentrations of reactants, protein expression
levels, and more. Each element of the interaction matrix
Ai←j ≡ Aij measures the effect of a slight increase of the
value of the state variable xj on the state variable xi.
Equation (2) can also be interpreted in the network

context. In this case, the state variable xiðtÞwould represent
the dynamics of node i in the network, and the matrix Aij

would then correspond to a matrix reflecting the strengths
of pairwise interactions between nodes. In fact, it would be
a product of an adjacency matrix identifying the topology
of the network with entries “0” and “1” and a weight matrix
specifying the strengths of the interactions.
Apart from the linear interaction terms in Eq. (2), with

strengths of pairwise interaction Aij, most natural and
manmade complex systems contain nonlinearities, as rep-
resented in the general formulation of Eq. (1). These
nonlinearities can be expressed by higher-order interaction
terms such as Cijkxjxk and Eijklxjxkxl, etc., with strengths
Cijk and Eijkl.
Now, the question arises as to whether it is possible to

construct these higher-order interactions and determine the
strengths of interactions Aij, Cijk, and Eijkl, etc., directly
from observations of the dynamics of a complex system.
Here, we propose a data-driven approach to detect and
quantify pairwise and, in particular, higher-order inter-
actions. Our approach is based on disentangling the
deterministic and stochastic parts of multivariate time series
of measured state variables xiðtÞ or of suitable observables
that characterize each subsystem (node) of a complex
network. To do so, we generalize our recently proposed
approach to estimate Kramers-Moyal coefficients for one-
dimensional systems [51] and show that interactions—
including pairwise, three-way, and higher-order—in the
dynamical state variables of a high-dimensional complex
system can be formulated in terms of unconditional, small-
time-lag correlation functions and statistical moments of
multivariate time series of dimension N . Solving a set of
linear (nonlinear) equations (Appendixes A, B, C, and F)
constructed from Kramers-Moyal coefficients derived from
the aforementioned functions and moments allows us to
characterize these interactions.

III. METHOD OF CHARACTERIZING
INTERACTIONS

The ultimate goal of the analysis ofN -dimensional time
series—measured from N interacting components of a
complex system—is to extract the underlying dynamical
equations from these time series in the form of a system of
stochastic differential equations [11–16]. Constructing
nonlinear stochastic dynamical equations from measured
multivariate time series enables us to reveal interactions of
different orders in the deterministic and stochastic parts of

the dynamics, including their strength and direction. In the
following subsections, we estimate two sets of quantities
from a given multivariate time series. The first set com-
prises the strengths of higher-order (≥2) interactions for the
deterministic part FðxÞ, and the second set includes the
strengths of higher-order interactions in the stochastic
component G of Eq. (1). These sets also facilitate the
reconstruction of the dynamics of the multivariate time
series based on the estimated strengths of interactions.

A. Characterization of interactions from the
deterministic part of the dynamics

Let us start with the more challenging task of Recipe (2),
where we do not know the functions Fðx; tÞ but have
time series based on which we reconstruct the deterministic
part of the dynamics. When comparing Eqs. (1) and (2), it
becomes evident that F contains only a linear term
represented by AxðtÞ. In order to include a possible
nonlinear property of F in Eq. (1), we write down FðxÞ
up to the third order (a generalization to arbitrary orders is
straightforward; cf. Appendixes B and C) and find

FiðxÞ ¼ αi þ
XN
j¼1

Aij xj þ
XN

ðj;kÞ¼1

Cijk xj xk

þ
XN

ðj;k;lÞ¼1

Eijkl xjxkxl: ð3Þ

Here, x is any point in the N -dimensional state space, and
Cijk ≡ Ci←ðjkÞ (and Eijkl ≡ Ei←ðjklÞ) refers to the combined
effect of state variables xj and xk or observables measured
in subsystems j and k on state xi, and so on. We omitted the
t dependence in Eq. (3) to enhance readability. The constant
drift for each state variable is denoted by αi. The matrix A
and tensors C and E represent the strengths of pairwise,
three-way, and four-way interactions in the deterministic
part of the dynamics F, respectively, and are real-valued
matrices or tensors.
The function Fðx; tÞ is equal to the conditional

moment Dð1Þðx; tÞ known as the first KM coefficient or
N -dimensional drift vector [52] (Appendix A). Its com-
ponents are given by (using the Itô interpretation of the
underlying stochastic dynamical equation) [14–16,53]

Dð1Þ
i ðx; tÞ ¼ lim

τ→0

1

τ
hxiðtþ τÞ − xii

���
xðtÞ¼x¼ðx1;x2;…;xN Þ

¼ lim
τ→0

1

τ

Z
dx0pðx0; tþ τjx; tÞðx0i − xiÞ; ð4Þ

where i ¼ 1;…;N , and the bracket h…ij::. represents
conditional averaging. In the case of stationary processes,
these averages correspond to time averages. For nonsta-
tionary processes, one has to consider ensemble averages
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for a given t in Eq. (4) when accounting for an explicit time
dependence. It is important to note that the averaged values
are dependent on the state variable x. The expression (4)
demonstrates that the drift vector can be determined from
time series using the conditional probability distributions
pðx0; tþ τjx; tÞ in the limit of a small time lag τ.
In the following, we present a general approach for

obtaining the elements of matrixA in Eq. (2) by employing
statistical moments and short-term (small-lag) correlation
functions from a time series. Consider the N -dimensional
zero-mean linear time series xðtÞ satisfying

d
dt

xðtÞ ¼ Dð1Þðx; tÞ ¼ AxðtÞ; ð5Þ

where the drift vector Dð1Þ
i ðx; tÞ is given by Eq. (4). By

defining ϕi;jðτÞ≡ ϕi;j ¼ τAi;j for i; j ¼ 1;…;N , and
using Eq. (5) and the definition of a drift vector
[Eq. (4)], we have

hxiðtþ τÞ − xiðtÞi
��
xðtÞ¼x¼ðx1;x2;…;xN Þ

¼ hyiðt; τÞi
��
xðtÞ¼x¼ðx1;x2;…;xN Þ

¼ ϕi;1x1 þ ϕi;2x2 þ � � � þ ϕi;N xN : ð6Þ

We omitted the t dependence on the right-hand side of
Eq. (6) but kept the t and τ dependence on the left-hand side
to enhance readability. The conditional average in relation
(6) is defined as

hyiðt; τÞi
��
xðtÞ¼x¼ðx1;x2;…;xN Þ

¼
Z

yipðyijx1;…; xN Þdyi

¼
Z

yi
pðyi; x1;…; xN Þ
pðx1;…; xN Þ dyi

¼ ϕi;1x1 þ ϕi;2x2 þ � � � þ ϕi;N xN : ð7Þ

Here, we used Bayes’ theorem and will subsequently utilize
the second and third rows of Eq. (7). Multiplying both
sides of Eq. (7) by xjpðx1;…; xN Þdx1 � � � dxN , where
pðx1;…; xN Þ is the N -point joint probability distribution
function, and integrating over all state variables xi results in

hyiðt; τÞxji ¼ ϕi;1hx1xji þ � � � þ ϕi;N hxN xji: ð8Þ

We note that the averaging in all terms in Eq. (8) does
not depend on any conditions regarding xðtÞ ¼ x ¼
ðx1; x2;…; xN Þ. Therefore, the coefficients ϕi;j can be
derived from

2666664
hyiðt; τÞx1i
hyiðt; τÞx2i

..

.

hyiðt; τÞxN i

3777775 ¼

2666664
hx21i hx1x2i � � � hx1xN i
hx1x2i hx22i � � � hx2xN i

..

. ..
. ..

.

hx1xN i hx2xN i � � � hx2N i

3777775

·

2666664
ϕi;1

ϕi;2

..

.

ϕi;N

3777775: ð9Þ

Using the definition yi ¼ xiðtþ τÞ − xiðtÞ, the problem of
calculating ϕi;jðτÞ and henceforth Ai;j ¼ limτ→0 ϕi;jðτÞ=τ is
reduced to calculating short-term correlation functions of
hxiðtþ τÞxjðtÞi and statistical moments hxiðtÞxjðtÞi. In the
end, it is necessary to approach the limit as τ → 0 in order
to estimate Ai;j (for more information, see Appendix B).
Building upon the Kramers-Moyal coefficients described

earlier, we generalize the aforementioned approach to
determine the constant drift terms αi and the strength of
interaction matrices or tensors A, C, and E in Eq. (3) from
multivariate time series as outlined in Appendixes B and C.
It is worth noting that higher-order interactions represented
by C and E within the deterministic component of the
dynamics F can be regarded as measures to test for non-
Gaussianity of empirical multivariate time series.
An expression such as Eq. (3) can be interpreted from

two different points of view: first, to consider deviations
from a steady state at the origin (for αi ¼ 0), and second,
for networked dynamical subsystems whose interactions
can be expressed by polynomial functions, as we demon-
strate with examples in the next section. For both these
cases, we are able to estimate the pairwise and higher-order
interactions from the time series. If we keep the expansion
(3) up to the order Z, the total number of independent
coefficients (entries in the matrices) would be n ¼
½N ðN þ ZÞ!=N !Z!�. The required statistical moments
up to the order p to find the pairwise, three-way, etc.,
strengths of interactions from the time series are p ≤ 2Z,
where Z ¼ 3 for expansion (3) and p ¼ 1;…; 6 (see
Appendix C).
Next, we briefly discuss the simpler case of Recipe

(1) for which we already consider stochastic equations that
are described by Eq. (1). In addition, we assume that the
deterministic component of the evolution of state vector
xðtÞ is given by the flow FðxÞ; i.e., the interactions are
known in terms of their functional form but not their
strength. If the type of interaction is polynomial, we can
immediately apply the formalism above to determine the
strength of interactions corresponding to the unknown
parameters in the interaction terms. In addition, our method
can be generalized to nonpolynomial expressions in FðxÞ,
which makes it even more versatile. It allows one to
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estimate, from time series, strengths of interactions and
control parameters in any given functional form FðxÞ
resulting from a modeling process that could generate
many applications to problems in physics, where first
principles already determine the deterministic form of
the equations.

B. Characterization of interactions from the
stochastic part of the dynamics

In a manner similar to the estimation of constant drift
terms αi and the strength of interaction matrix A and
tensors C and E in the deterministic component of the
dynamics F from multivariate time series [see Eq. (3)],
here, we characterize strengths of interactions in the
stochastic component G of Eq. (1) [14,54,55]. In
Eq. (1), the elements gijðxÞ of the multiplicative tensor
GðxÞ are linked to the diffusion matrix (the second-order
Kramers-Moyal coefficients of the N -dimensional time

series) as follows: Dð2Þ
ij ðxÞ ¼

PN
l¼1 gilðxÞgjlðxÞ. This

expression for Dð2Þ
ij ðxÞ can be represented in terms of

conditional averaging (see Appendix D) as

Dð2Þ
ij ðxÞ ¼ lim

τ→0

1

τ
h(xiðtþ τÞ − xiðtÞ)

× (xjðtþ τÞ − xjðtÞ)ijxðtÞ¼x¼ðx1;x2;…;xN Þ: ð10Þ

Similar to the expansion in Eq. (3), we can likewise expand
the diffusion matrix. For a general N -dimensional time

series, expanding each component of Dð2Þ
ij ðxÞ (comprising

N ×N components) up to, for example, the third order,

Dð2Þ
ij ðxÞ ¼ Pij þ

X
k

Qij;kxk

þ
X
k;l

Rij;klxkxl þ
X
k;l;m

Sij;klmxkxlxm; ð11Þ

yields strength of interaction tensors P, Q, R, and S, each
multiplied by the noise ηjðtÞ. These interaction tensors can
also be expressed in terms of unconditional, small-time-lag
correlation functions and statistical moments of a multi-
variate time series of dimension N (see Appendix D for
further details).
We note that adding stochasticity in Eq. (3), such as

multiplicative Wiener noise, will not change the form of the
drift vector in the Itô interpretation of driven dynamical
equations (1) [15]. The explicit form of the matrix elements

gilðxÞ obtained from the diffusion coefficients Dð2Þ
ij ðxÞ is

given in Appendix E, also for the case of correlated noise.
For the correlated white noise in Eq. (1), with covariance

matrix h, the diffusion coefficients are given by Dð2ÞðxÞ ¼
GhGT, and the drift term will not be affected (see
Appendix E).

C. Interim summary

Our method to characterize higher-order interactions
encompasses two distinct sets of quantities that we estimate
from a given multivariate time series. The first set com-
prises constant drift terms α, the interaction matrix A, and
tensors C and E for the deterministic part FðxÞ of Eq. (1),
which are derived from the drift vectorDð1Þ

i ðxÞ. The second
set comprises tensors P, Q, R, and S for the stochastic part
GðxÞ of Eq. (1), which are derived from the diffusion

matrix Dð2Þ
ij ðxÞ. These matrices serve different purposes:

The linear term A and the constant tensors P and Q
describe the linear characteristics of N -dimensional time
series, while tensors C;E;… and R;S;… account for
higher-order interactions in the deterministic and stochastic
parts of the dynamics (see Appendix E for further details).
Nonvanishing Q, R, S signify the multiplicative nature of
the multivariate time series under study. Importantly,
these sets enable us to reconstruct the dynamics of the
multivariate time series using the estimated strengths of
interactions.
The computational complexity of our method to estimate

pairwise and higher-order interactions has, at most, Oðn3Þ,
which originates from the complexity of solving an n-by-n
system of linear equations to calculate α, A;C;E; � � �
and P;Q;R;S; � � �.
We now demonstrate our approach with two types of

interacting systems: For a proof of principle, we consider
(1) complex systems with one to nine interacting compo-
nents possessing different nonlinear interactions, and (2) a
networked dynamical system that possesses nonlinear
higher-order interactions.

IV. INVESTIGATING THE METHOD’S
SUITABILITY

We used multidimensional nonlinear dynamical systems
(Table I), for which the strengths of interactions between
state variables are known in the form of preset control
parameters [cf. Recipe (1)] in the respective governing
equations (the phase portraits of these and other exemplary
systems are presented in Appendix H). We generated
synthetic time series of length N by numerically integrating
these equations after adding Gaussian-independent white
noise η (time derivative of theWiener process with intensity
σ). To do so, we used an adaptive, embedded, Rößler-type,
stochastic, Runge-Kutta integration method [56–58]. The
integration time step dt was chosen as a trade-off between
the stability of numerical integration and computational
costs. Including the aforementioned noise enabled us to
estimate the deterministic and stochastic components of the
dynamics using only one noise realization. However, this
required a noisy trajectory long enough to assume statio-
narity and ergodicity (large number of data points N)
instead of having many realizations starting from different
positions in state space. If the trajectories obtained from
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simulations were only short, we performed ensemble
averaging.
We assessed the accuracy of our method at various

stages of the estimation procedure with statistical tests
(cf. Appendix G). First, we evaluated the matching between
the true drift functions computed for each component
Fi(xðtÞ) and the estimated drift functions eFi(xðtÞ) based
on the simulated xðtÞ (we report the coefficient of deter-
mination R2; for a perfect match, R2 ¼ 1). Next, we
considered the entire dynamics, which arises from both
the deterministic drift F(xðtÞ) and the stochastic part
G(xðtÞ) in the dynamical equation (1). We evaluated the
equality of the CDFs of time series generated from the true
functions and parameters with the CDFs of time series
generated using the estimated functions and parameters
(two-sample KS test; we report the KS statisticDKS and the
corresponding significance level pKS). Eventually, we
estimated and reported the differencesΔ between estimated
strengths of interactions and preset values. We performed
these analyses for different integration times T ¼ Ndt and
averaged over 50 realizations of applied noise.

A. Dynamical equations

1. Example A1

A two-dimensional dynamical system for which FðxÞ is
a polynomial of third order (four-way interactions). The
dynamical equations read

ẋ1 ¼ F1ðx1; x2Þ
¼ 2x1 − x2 þ ðx21 þ x22Þð−5x1 − 7.5x2Þ þ

ffiffiffi
σ

p
η1;

ẋ2 ¼ F2ðx1; x2Þ
¼ x1 − 2x2 þ ðx21 þ x22Þð7.5x1 − 5x2Þ þ

ffiffiffi
σ

p
η2: ð12Þ

Time series of x1 and x2 exhibit transitions between two
stable states [Fig. 1(a)]. This example can be considered as
a test case for which the estimated coefficients can be
interpreted as strengths of interactions in the expression of
FðxÞ in Eq. (3) [Recipe (1)]. The results of characterizing
higher-order interactions from simulated time series are
presented in Fig. 1.

2. Example A2

A host-immune-tumor model, also known as the
dynamical model of cancer growth, is given by [59]

ẋ1 ¼ F1ðx1; x2; x3Þ
¼ x1ð1 − x1Þ − a12x1x2 − a13x1x3 þ x1

ffiffiffi
σ

p
η1;

ẋ2 ¼ F2ðx1; x2; x3Þ
¼ r2x2ð1 − x2Þ − a21x2x1 þ x2

ffiffiffi
σ

p
η2;

ẋ3 ¼ F3ðx1; x2; x3Þ
¼ r3

x1x3
x1 þ k3

− a31x1x3 − d3x3 þ x3
ffiffiffi
σ

p
η3: ð13Þ

This model is used to demonstrate a test case for a
nonpolynomial function FðxÞ. More details are given in
Appendix H; here, we note that all control parameters in the
equations are positive. Exemplary time series of x1, x2, and
x3 and results of characterizing higher-order interaction are
presented in Fig. 2.

3. Example A3

The Malthus-Verhulst model describes population
growth in ecology, where the growth rate is proportional
to the population size and limited by a carrying capacity.

TABLE I. Dynamical equations (DE) and networks dynamical systems (NDS) used to investigate the suitability of our proposed
method to characterize higher-order interactions. Results for dynamical equations A1, A2, A3, and A7 as well as for the networks
dynamical systems are reported in the main text; for an in-depth discussion of these and the other models, see Appendixes H and I. Here,
N denotes the dimensionality of the system (for NDS, N equals the network size), and T95 denotes the integration time T ¼ Ndt for
which the coefficient of determination is R2 ≳ 0.95 between estimated and actual drift functions. The networked Kuramoto-Sakaguchi
oscillators were simulated with integration time T ¼ 10000. Model Id refers to model identification number.

Model Id. N Type or model Applied noise T95

DE A1 2 Polynomial, with four-way interactions Additive ≳100
DE A2 3 Nonpolynomial, host-immune-tumor model Multiplicative ≳400
DE A3 1 Polynomial, noisy Malthus-Verhulst model for population growth Multiplicative ≳10000
DE A4 2 Polynomial, dynamical systems with three-way interactions Additive ≳10000
DE A5 2 Polynomial, FitzHugh-Nagumo model with four-way interactions Additive ≳200
DE A6 3 Polynomial, rock-paper-scissors model with four-way interactions Additive ≳10000
DE A7 9 Polynomial, generalized Lorenz system with three-way interactions Additive ≳500
NDS configuration 1 3 Kuramoto-Sakaguchi oscillators with pairwise and three-way interactions Additive 10000
NDS configuration 2 4 Kuramoto-Sakaguchi oscillators with pairwise, three-, and four-way interactions Additive 10000
NDS configuration 3 6 Kuramoto-Sakaguchi oscillators with pairwise, three-, and four-way interactions Additive 10000
NDS configuration 4 6 Kuramoto-Sakaguchi oscillators with indirect paths and spurious links due to

common driver
Additive 10000
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Introducing randomness into the capacity parameter gives
rise to multiplicative stochastic dynamical equations,
known as the noisy Malthus-Verhulst model [60]. By
incorporating stochasticity, the model provides a more
realistic representation of ecological systems, accounting

for the uncertainties and variability observed in real-world
populations [61]. The noisy Malthus-Verhulst model
exhibits a noise-induced transition, in which the noise
takes on an “active” (multiplicative) role. The dynamics is
given by

− 0.4
0.0
0.4

x 1

0 25 50 75 100 125 150 175
Time

− 0.3
0.0
0.3

x 2

− 0.5 0.0 0.5
0.0

0.4

0.8

C
D

F 
(x

1) Estimated
True

− 0.5 0.0 0.5
0.0

0.4

0.8

C
D

F 
(x

2) Estimated
True

− 2.5
0.0
2.5

∆

×10 −2

− 1.5
0.0
1.5
3.0

×10 −1

− 2.5
0.0
2.5

×10 −1

− 4
0
4

×10 −1

− 8
0
8

×10 −1

102 103

T

− 6
0
6

∆

×10 −1

102 103

T

− 1.5
0.0
1.5

102 103

T

− 5
0
5

102 103

T

− 6
0
6

102 103

T

− 4
0
4

x
2

2 x
1
3 x

1
2x

2
x

1
x

2
2 x

2
3

x
1
x

2x
1
2x

2
x

1
1

102 103

T

1

2

3

∆

×10 −3

g
11

g
22

g
12

10 2 10 3

T

9.60

9.75

9.90

10.0

R
2

−
sc

or
e

×10−1

x
1

x
2

(a) (b)

(c)

(d) (e)

FIG. 1. Characterizing higher-order interactions from the simulated time series of Example A1 [Eq. (12)]. (a) Excerpts of exemplary
time series of x1ðtÞ and x2ðtÞ simulated with time step dt ¼ 0.01. Initial conditions were chosen randomly from the interval ð−1; 1Þ for
every dynamical variable. (b) Cumulative distribution functions (CDF) of time series (T ¼ 2000) generated from true and estimated drift
vectors and diffusion matrices (CDF estimated using a binning method with 51 bins). The Kolmogorov-Smirnov (KS) test indicated no
differences between true and estimated CDFs [for x1ðtÞ, DKS ¼ 0.04 and pKS < 10−4; for x2ðtÞ, DKS ¼ 0.03 and pKS < 10−4].
(c) Differences Δ between estimated strengths of interactions (coefficients of deterministic drift terms) and preset values for different
integration times T ∈ ð100; 200; 400; 600; 800; 1000; 2000Þ. (d) Differences Δ between estimated coefficients of diffusion terms and
preset values (g11 ¼

ffiffiffi
σ

p
, g22 ¼

ffiffiffi
σ

p
, and g12 ¼ g21 ¼ 0, with

ffiffiffi
σ

p ¼ 0.2) for different integration times T. We find these differences to be
smaller for higher noise intensities (see Fig. 11 in Appendix H), which results from the fact that the system explores a larger part of the
phase space and, therefore, the noisy time series carry considerably more information about the dynamics. Thus, a larger noise intensity
might even be advantageous for our method and can potentially yield better results. (e) Matching (R2-score) between true F(xðtÞ) and
estimated drift functions F̃(xðtÞ) based on the simulated xiðtÞ for different integration times T. Error bars represent the standard errors of
the means derived from 50 different realizations of applied noise. In panels (c)–(e), lines are only to guide the eye.
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ẋ ¼ FðxÞ ¼ −x2 þ νxþ Γxη; ð14Þ

where ν and Γ are real constants and η is white noise.
More details are given in Appendix H, and exemplary time
series of the dynamics before and after the noise-induced
transition at Γ ¼ 1 are shown in Fig. 3(a).

4. Example A7

A nine-dimensional polynomial Lorenz-type model
was proposed in Ref. [62] to study high-dimensional chaos.

The dynamical equations as well as the full statistical analysis
to present the accuracy of our method, even in a high-
dimensional case, are shown in Appendixes H and J. We
estimated 9 × 55 different coefficients, and the results are
depicted in Fig. 4.
The findings achieved so far already underline the high

suitability of our data-driven method to characterize the
strength of higher-order interactions in nonlinear dynamical
systems and in the presence of both additive and multi-
plicative noise. In Appendix H, we highlight the generality
of our findings with a variety of other dynamical systems
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FIG. 2. Sameas Fig. 1 but for ExampleA2 [Eq. (13)]. Initial conditionswere chosen randomly from the interval (0, 1) for every dynamical
variable. The state variables x1ðtÞ, x2ðtÞ, and x3ðtÞ in Eq. (13) have positive values [see panel (a)]. To ensure positivity of time series, we
included multiplicative noise terms xiðtÞ

ffiffiffi
σ

p
ηi in Eq. (13). The integration time step was dt ¼ 0.01 and

ffiffiffi
σ

p
was fixed at 0.001. The KS test

indicated no differences between true and estimated CDFs (T ¼ 4000; for x1ðtÞ, DKS ¼ 0.02; for x2ðtÞ, DKS ¼ 0.02; and for x1ðtÞ,
DKS ¼ 0.03; pKS < 10−4 for all cases). After estimating the diffusion coefficient Dð2Þ

ij ðxÞ, σ can be found using the method presented in
Appendix E. Details for solving this nonpolynomial example and estimating the unknown parameters are given in Appendix H.
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(cf. Table I), each of them containing a different challenge.
Our findings, however, also indicate that the integration
time T constrains the method’s accuracy. In general, the
larger the sample size, the higher the accuracy; however,
the choice of sample size depends on the system under
investigation, which would need to be taken into account
when investigating systems for which one does not have
access to the ground truth.
As regards analyses of empirical data, another important

aspect is that the order Z of the expansion (3) is a priori not
known. Since an inappropriate choice ofZmaydeteriorate the
method’s accuracy, in Appendix J, we discuss a procedure to
estimate the highest order for a given integration time T [51].
In this context, we also assess the quality of the estimation of
higher-order statistical moments. Eventually, in Appendix K,
we investigate how observational noise impacts the estima-
tion of the strength of higher-order interactions.

B. Networked dynamical system

We now apply our approach to a networked dynamical
system and reconstruct pairwise andhigher-order interactions

from time series [Recipe (1)]. The system consists of
Kuramoto-Sakaguchi phase oscillators [63–65] coupled onto
networks of different sizes and with different preset pairwise
and higher-order interactions. The phase dynamics at node
(oscillator) i reads

θ̇i ¼ ωi þ K1

XN
j¼1

aij sinðθj − θiÞ

þ K2

XN
ðj;kÞ¼1

cijk sinð2θj − θk − θiÞ

þ K3

XN
ðj;k;lÞ¼1

eijkl sinðθj þ θk − θl − θiÞ

þ ffiffiffi
σ

p
ηi: ð15Þ

Here, θi denotes the phase of oscillator i, ωi is its natural
frequency [to be drawn from some distribution pðωÞ; for
instance, the uniform distribution in an interval], andK1,K2,
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FIG. 3. Same as Fig. 1 but for Example A3 [Eq. (14)] simulated with time step dt ¼ 0.01. Initial conditions were chosen randomly
from the interval (0, 1) for every dynamical variable. Excerpts of exemplary time series before (ν ¼ 1, Γ ¼ 0.6; blue) and after (ν ¼ 1,
Γ ¼ 1.1; light blue) the noise-induced transition are shown in panel (a). For this one-dimensional example, the applied noise is

multiplicative. After estimating the diffusion coefficientDð2ÞðxÞ, the value of Γ can be found from the relation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dð2ÞðxÞ

q
¼ Γx. The KS

test indicated no differences between true and estimated CDFs (T ¼ 20000; for Γ ¼ 0.6, DKS ¼ 0.03 and for Γ ¼ 1.1, DKS ¼ 0.18;
pKS < 10−4 for both cases).
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andK3 are the coupling strengths of the 1-, 2-, and 3-simplex
interactions, respectively. The mutually independent
Gaussian white noise ηi has intensity σ. The notation in
Eqs. (15) follows Refs. [63,66–68]; we note that, in our
approach, the strengths of the interactions are the product of
the adjacency matrix a and the tensors c and e with the
coupling strengths K1, K2, and K3.
Let us consider an undirected and unweighted network,

which is encoded in the 1-simplex adjacency matrix a, the
2-simplex adjacency tensor c, and the 3-simplex adjacency
tensor e, where aij ¼ 1 if nodes i and j are connected by a
link (and otherwise aij ¼ 0), cijk ¼ 1 if nodes i, j, and k
belong to a common 2-simplex (and otherwise cijk ¼ 0),
and eijkl ¼ 1 if nodes i, j, k, and l belong to a common
3-simplex (and otherwise eijkl ¼ 0). We represent all
nonzero elements of the adjacency matrix and the respec-
tive tensors corresponding to node i in a compact form as
i: ð½aij; cijk; eijkl�Þ or in a simplified form as i: ð½j; jk; jkl�Þ.
For oscillator networks of size N ∈ f3; 4; 6g [see upper

panel of Fig. 5 for their 1-simplex (pairwise) structures], we
proceed as above and integrate Eqs. (15) with time step
dt ¼ 0.005 after adding Gaussian-independent white noise
η with intensity σ ¼ 0.25 to each dynamical equation. We
generated 50 ensembles of time series of θi, each consisting
of N ¼ 2 × 106 data points (T ¼ 10000), for different
network configurations presented in the following.

1. Configuration 1

We first consider a fully connected, undirected oscillator
network with N ¼ 3 nodes that features both pairwise and
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FIG. 4. All 9 × 55 strengths of interactions (red) estimated from a single realization (T ¼ 10000) of Example A7 [Eq. (H20)] together
with preset values (blue). Estimates of vanishing preset values are shown with very small amplitudes.
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FIG. 5. (a) Elements of the considered undirected oscillator
networks (size N ∈ f3; 4; 6g) with numbered nodes. For N ¼ 4,
the nonzero elements of the adjacency matrix and the tensors
acting on the ith node are i ¼ 1∶ð½2; 3; 4; 24; 42; 23; 32; 34; 43;
234; 243; 324; 342; 423; 432�Þ, i ¼ 2∶ð½1; 3; 4; 14; 41; 43; 34; 13;
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interaction strengths K1aij, K2cijk, and K3eijkl for the oscillator
network with N ¼ 4 nodes. The preset values of the coupling
strength are denoted by dashed vertical lines.
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three-way interactions (note that all elements of the
3-simplex adjacency tensor e will vanish here). The
adjacency matrix a is symmetric (i.e., aij ¼ aji), and we
consider c123 ¼ c132 ¼ c213 ¼ � � �. The nonzero elements
of the interactions are i ¼ 1: ð½2; 3; 23; 32�Þ, i ¼ 2:
ð½1; 3; 13; 31�Þ, and i ¼ 3: ð½1; 2; 12; 21�Þ, and we fix the
coupling strengths (K1 ¼ −0.100, K2 ¼ 0.020, K3 ¼ 0)
and the natural frequencies (ω1 ¼ 0.636, ω2 ¼ 0.972,
ω3 ¼ 0.504). Using our approach [see Appendix I for a
general method to estimate the strengths of interactions
ðK1aij; K2cijk; K3eijklÞ and the natural frequencies ωi from
time series], for the mean strengths of interactions, we
obtain K1a12 ¼ −0.099� 10−3, K1a13 ¼ −0.098� 10−3,
K1a23 ¼ −0.099� 10−3, and K2c123 ¼ 0.021� 10−3,
which is rather close to the respective preset values
ð−0.100;−0.100;−0.100; 0.020Þ. The same holds true
for the mean natural frequencies, for which we obtain
ω1 ¼ 0.636� 0.002, ω2 ¼ 0.973� 0.004, and ω3 ¼
0.503� 0.001.
For this network configuration, we check to what extent

our reconstruction method generates spurious links for the
case in which there is no direct connection between a pair

of nodes. To this end, we disconnect nodes 2 and 3
(a23 ¼ 0), integrate the dynamical equations (15) with
control parameters and coupling strengths as before, and
obtain K1a23 ¼ −0.00010� 0.00007. This finding points
to an estimation error of the order of 10−4 for a link with
aij ¼ 0. These findings emphasize the accuracy of our
reconstruction method also in the case of a networked
dynamical system.

2. Configuration 2

We next consider a fully connected, undirected oscillator
network with N ¼ 4 nodes that features pairwise, three-
way, and four-way interactions (see Fig. 5 for nonzero
elements of interaction). We fix the coupling strengths
(K1 ¼ −0.100, K2 ¼ 0.060, K3 ¼ 0.030) and the natural
frequencies (ω1 ¼ 0.605, ω2 ¼ 0.885, ω3 ¼ 0.602, ω4 ¼
0.950), and obtain strengths of interactions K1aij, K2cijk,
and K3eijkl as depicted in Fig. 5. Given our approach, we
expected two peaks for K1aij: one near the preset value of
K1 (with aij ¼ 1) and another near zero (for the elements
aij ¼ 0). This argument is valid also for K2cijk and K3eijkl.

FIG. 6. Clock-type representation of nonvanishing elements of the 1-simplex adjacency matrix a, the 2-simplex adjacency tensor c,
and the 3-simplex adjacency tensor e for a network of size N ¼ 6, depicted in Fig. 5. The three circles around the central nodes
i ¼ 1;…; 6 present the elements of the matrix a and of tensors c and e, respectively. Nonzero elements are connected with lines and with
different colors from the central node to the elements in each circle. As an example, we have chosen the links from each node as
i ¼ 1∶ð½5; 25; 52; 235; 253; 325; 352; 523; 532�Þ, i ¼ 2∶ð½3; 4; 35; 53; 345; 354; 435; 453; 534; 543�Þ, i ¼ 3∶ð½2; 24; 42; 245; 254; 425;
452; 524; 542�Þ, i ¼ 4∶ð½2; 23; 32; 256; 265; 526; 562; 625; 652�Þ, i ¼ 5∶ð½1; 2; 6; 16; 61; 261; 162; 216; 261; 612; 621�Þ, and i ¼ 6∶ð½5;
15; 51; 125; 152; 215; 251; 512; 521�Þ.
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With the knowledge that the adjacency matrix aij and the
respective tensors cijk and eijkl take the values 0 or 1 and by
discarding the three peaks at the origin (K1aij ¼ K2cijk ¼
K3eijkl ≃ 0), we obtain K1 ¼ −0.099� 0.015, K2 ¼
0.060� 0.002, and K3 ¼ 0.030� 0.002. Although the
higher-order strengths of interactions (K2cijk and
K3eijkl) are small compared to the 1-simplex interaction
strength (K1aij), our approach extracts the strengths of
interactions from the simulated time series with a very good
precision. The same holds true for the mean natural
frequencies, for which we obtain ω1 ¼ 0.605� 0.003,
ω2 ¼ 0.882� 0.004, ω3 ¼ 0.602� 0.002, and ω4 ¼
0.952� 0.004.

3. Configuration 3

We now consider an oscillator network of size N ¼ 6
(see Fig. 5) that undergoes an abrupt synchronization
transition via hysteresis and bistability of synchronized
and incoherent states due to the presence of higher-order
interactions [68]. This network also has the potential to
feature pairwise, three-way, and four-way interactions,
and the chosen nonvanishing elements of the adjacency
matrix a and the respective tensors c and e are depicted
in Fig. 6. For fixed natural frequencies ωi ¼ ð0.883;
0.549; 0.946; 0.948; 0.555; 0.636Þ and coupling strengths
(K1 ¼ −0.010, K2 ¼ 0.020, K3 ¼ 0.010), we proceed as
before, obtain the strengths of interactions K1a, K2c,
and K3e [Fig. 7(a)], and yield the estimated coupling
strengths as K1 ¼ −0.010� 0.004, K2 ¼ 0.019� 0.007,
and K3 ¼ 0.010� 0.001, which is again rather close to
the respective preset values. Figure 7(b) illustrates the
differences between estimated and preset natural frequen-
cies. Details of identifying the nonzero elements of the
adjacency matrix a, and the respective tensors c and e for
the case where K1, K2, and K3 are constants and for the
more general case of general weighted networks (where
K1aij → K1ijaij, K2cijk → K2ijkcijk, and K3eijkl →
K3ijkleijkl with arbitrary K1ij, K2ijk, and K3ijkl), are given
in Appendixes I and F.
For this network configuration, we study the robustness

of our method with respect to the presence of different
global states in the network (incoherent, bistable, and
synchronized). To this end, we estimate the natural
frequencies for three 1-simplex coupling strengths
K1 ∈ f−0.1; 0.1; 1.0g [K1;low (incoherent), K1;mid (bista-
ble), K1;high (synchronized)] and for fixed K2 ¼ 0.020
and K3 ¼ 0.010. We observe the estimated frequencies
to be rather close to the respective preset values regardless
of the different global dynamical states [Fig. 7(b)].

4. Configuration 4

Finally, we evaluate the performance of our method with
respect to the presence of an indirect path and a spurious
link due to a common driver. To this end, we study a

directed oscillator network of sizeN ¼ 6 (shown in the left
panel of Fig. 8), for which the preset values of matrix
elements a13 and a16 are zero. We fix the coupling strengths
(K1 ¼ −1, K2 ¼ 0.020, K3 ¼ 0.010) and the natural
frequencies [ωi¼ð0.883;0.549;0.946;0.948;0.555;0.636Þ],
and our reconstruction method yields strengths of
interactions K1a13 ¼ 0.0004� 0.0001 and K1a16 ¼
0.007� 0.002. For the nonvanishing elements aij, we
obtain K1aij ¼ −1.0044� 0.0001, K2cijk ¼ 0.019�
0.003, and K3eijkl ¼ 0.0095� 0.0012 (cf. middle panel
of Fig. 8); the reconstructed natural frequencies are
(0.890�0.036;0.553�0.023;0.955�0.030;0.986�0;141;
0.552�0.043;0.636�0.001). The notably small strengths
of interactions for the indirect path Oð10−4Þ and for the
spurious link Oð10−3Þ indicate that our approach can
handle such ambiguities quite well.
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FIG. 7. (a) Histograms of estimated coupling strengths for the
oscillator network with N ¼ 6 nodes. The preset values are
indicated by vertical dashed lines. (b) Differences between
estimated and preset natural frequency Δωi of each oscillator
for three 1-simplex coupling strengths K1;low, K1;mid, and K1;high)
and for K2 ¼ 0.020 and K3 ¼ 0.010. Error bars denote the
standard error of the mean obtained from 50 realizations with
integration times T ¼ 5000 and T ¼ 15000.
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V. CONCLUSIONS AND DISCUSSIONS

The study of many natural and manmade complex
systems in terms of complex networks has been a tremen-
dous success over the past decades. One research focus
has been on how to model such systems based on first
principles, including the design of appropriate couplings
between subsystems in a network context. A second
research focus has addressed the problem how to construct
a network from multivariate time series. As a first approxi-
mation, one needs to estimate an “adjacency matrix,”which
identifies the interactions between pairs of network com-
ponents or between subsystems associated with network
nodes. Network links can be derived from bivariate
statistical measures such as cross-correlation coefficients,
mean phase coherence, mutual information, causal direc-
tionality, etc.; see, for instance, Refs. [37,38,43,70,71]. The
matrix then provides an averaged pairwise influence of a
given time series over others. However, nowadays, it is
believed that interactions in a network often take place
between multiple nodes [46,49]. These higher-order inter-
actions appear, in general, when the physical, chemical, or
biological interactions between components of a complex
network are modeled. Consequently, they need to be
considered when reconstructing the dynamics of a net-
worked system from multivariate time series. In addition,
one has to bear in mind that all natural systems are subject
to noise.
The approach developed in this paper provides a novel

method to characterize higher-order (≥2) interactions,
which we achieved by combining the following:

(i) the idea of approximating the deterministic and
stochastic dynamics of a system, including inter-
actions of higher orders based on observed time
series, and

(ii) the estimation of drift and diffusion terms employing
the Kramers-Moyal coefficient approach.

By investigating time series from various high-dimensional
model systems with preset higher-order interactions and
thus with access to ground truth, we could demonstrate that
our approach can be successfully applied to reconstruct
high-dimensional complex systems with many interacting
components as well as networked systems where the
dynamics of each node is represented by one state vari-
able, based of multivariate time series. Our approach
yields estimates for pairwise (matrix A) and higher-order
(tensors C and E) interactions. It is important to note that
the interaction matrix A in our approach is fundamentally
different from the aforementioned adjacency matrix [see
Figs. 8(b) and 8(c)]. This difference is due to the fact that,
from the first step, we started from the dynamics encoded in
a time series and, hence, our estimated interaction matrixA
provides local dynamical properties of state variable xi.
Therefore, our estimated interaction matrices and tensors in
different orders originate from the dynamics of the system
under consideration.
The data-driven characterization of interactions of differ-

ent order (including pairwise, three-way, and higher-order)
in open and adaptive high-dimensional complex systems is
rapidly gaining increasing importance. Nowadays, there are
many approaches to reconstruct stochastic models from
data. Examples include the generalized Langevin equations
[72,73], fractional Klein-Kramers equations [74] and
underdamped Langevin equations [75], as well as dis-
crete-time ARFIMA (autoregressive fractionally integrated
moving average) and NARMA (nonlinear autoregressive
moving average) models [76,77], compressed sensing
[78,79], phase dynamics [80], event timing patterns [81],
model-free inference of direct network interactions [82],
detecting hidden units [83], and statistical inference of such
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FIG. 8. (a) Elements of the considered directed oscillator network (size N ¼ 6) with numbered nodes (cf. Ref. [69]). Because of the
common driver (node 5), nodes 1 and 3 appear to be connected by an indirect path, and nodes 1 and 6 by a spurious link. The nonzero
elements of matrix a and the respective tensors c and e are i ¼ 1∶ð½2; 4; 14; 41; 234; 243; 324; 342; 423; 432�Þ, i ¼ 2∶ð½3; 24; 42;
43; 34; 134; 143; 314; 341; 413; 431�Þ, i ¼ 3∶ð½; 14; 41; 124; 142; 214; 241; 412; 421�Þ, i ¼ 4∶ð½2; 3; 12; 21; 13; 31; 123; 132; 213; 231;
312; 321�Þ, and i ¼ 5∶ð½1; 3; 12; 21; 13; 31; 123; 132; 213; 231; 312; 321�Þ. (b),(c) Product of the estimated coupling strength and
elements of the adjacency matrix −K1aij (preset coupling strengthK1 ¼ −1) and the matrix of correlation coefficients ρc between phase
time series from pairs of oscillators (computed from the six-dimensional phase time series). Matrix elements were averaged over 50
realizations.
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models from stochastic processes with long-range corre-
lations and fractional diffusion processes [84,85]. Our
method goes beyond these approaches. It allows one to
derive important characteristics of higher-order interactions
in deterministic and stochastic components of the dynamics
with high accuracy from the statistical moments and small-
lag correlation functions of time series measured in sub-
systems of a complex system. In addition, it provides
detailed insights into a subsystem’s (nodal) dynamics.
Extensions of our approach to dynamical systems with

time-delayed interactions will be an imminent consequence
of methods presented in this work. We believe that our
approach provides a methodology that can help improve our
understanding of the impact of higher-order interactions in
many fields of science, including neuroscience, physics,
chemistry, biology, informatics, finance, data science, ecol-
ogy, climate dynamics, etc. Research along this line is
already underway and will be published elsewhere [86].

The code [87] contains all the necessary details for
calculating both pairwise and higher-order interactions
from multivariate time series data.
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APPENDIX A: PAWULA THEOREM

In general, the probability distributions ofN -dimensional
Markov processes (in practice, Markovianity of a given
time series should be verified via some statistical test
[15]) satisfy a first-order partial differential equation in time
and an infinite order of differentiation with respect to the
state variable. The governing equation is known as the
Kramers-Moyal equation [15,52,53]. The Pawula theorem
[88] states that there are only three possible cases in the KM
expansion up to order n: (i) The KM expansion is truncated
at n ¼ 1, meaning that the process is deterministic; (ii) the
KM expansion stops at n ¼ 2, with the resulting equation

being the Fokker-Planck equation that describes diffusion
processes, and finally, (iii) the KM expansion contains all
the terms up to n → ∞. Any truncation of the expansion at
a finite order n > 2 would produce a nonpositive proba-
bility density pðx; tÞ [15,53,88]. For case (ii), the KM
expansion reduces to the Fokker-Planck equation, which
means that the first and second KM coefficients Dð1Þðx; tÞ
(drift coefficient or drift vector) and Dð2Þðx; tÞ (diffusion
coefficient) would be nonvanishing, whereby there is a
possibility of vanishing Dð1Þðx; tÞ.
Now, one can ask which dynamical equation governs

the stochastic variable x itself, where its marginal and
conditional PDFs satisfy the Fokker-Planck equation.
The corresponding stochastic equation is known as the
Langevin equation. With the Itô interpretation of a sto-
chastic integral, it has the following form [14,15]:

dxi ¼ Dð1Þ
i ðx; tÞdtþ

XN
j¼1

gijðxÞηjðtÞ; ðA1Þ

where ηjðtÞ is independent Gaussian white noise with
unit intensity, i.e., hηkðt1Þηjðt2Þi ¼ δk;jδðt2 − t1Þ. In the
Itô interpretation, one has F ¼ Dð1Þðx; tÞ in Eq. (1) in the
main text. The diffusion matrix of the dynamics is given by

the functions gijðxÞ as Dð2Þ
ij ðxÞ ¼

PN
l¼1 gilðxÞgjlðxÞ and is

stated in terms of second-order conditional moments of the
N -dimensional time series (see Appendixes D and E).

APPENDIX B: BASIC IDEA TO DETERMINE
THE LINEAR DRIFT VECTOR

Let us describe the general idea that can be used
to determine elements of the matrix A (in addition, a
constant vector α) in Eq. (2), in terms of statistical moments
and short-time (small-lag) correlation functions of an
N -dimensional time series. Consider the N -dimensional
linear process xðtÞ satisfying

d
dt

xðtÞ ¼ Dð1Þðx; tÞ ¼ αþAxðtÞ; ðB1Þ

where the drift vector Dð1Þ
i ðx; tÞ is given by

Dð1Þ
i ðx; tÞ ¼ lim

τ→0

1

τ
hxiðtþ τÞ − xiðtÞi

���
xðtÞ¼x¼ðx1;x2;…;xN Þ

¼ lim
τ→0

1

τ
hyiðt; τÞi

���
xðtÞ¼x¼ðx1;x2;…;xN Þ

; ðB2Þ

with i ¼ 1;…;N and yiðt; τÞ ¼ xiðtþ τÞ − xiðtÞ. By
defining ϕi;jðτÞ≡ ϕi;j ¼ τAi;j for j > 0 and ϕi;0ðτÞ≡
ϕi;0¼ταi, using Eq. (B1), we have
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hxiðtþ τÞ − xiðtÞijxðtÞ¼x¼ðx1;x2;…;xN Þ
¼ hyiðt; τÞijxðtÞ¼x¼ðx1;x2;…;xN Þ
¼ ϕi;0 þ ϕi;1x1 þ ϕi;2x2 þ � � � þ ϕi;N xN : ðB3Þ

Here, we assume that, besides the linear interactions
represented by A, the dynamics could even contain a
constant contribution corresponding to the term ϕi;0.
The conditional average is defined as

hyiðt; τÞijxðtÞ¼x¼ðx1;x2;…;xN Þ ¼
Z

yipðyijx1; x2;…; xN Þdyi

¼
Z

yi
pðyi; x1; x2;…; xN Þ
pðx1; x2;…; xN Þ dyi

¼ ϕi;0 þ ϕi;1x1 þ ϕi;2x2 þ � � �
þ ϕi;N xN : ðB4Þ

Multiplying both sides of Eq. (B4) by the N -point joint
probability distribution function pðx1; x2;…; xN Þ and inte-
grating over all state variables results in

hyiðt; τÞi ¼ ϕi;0 þ ϕi;1hx1i þ ϕi;2hx1i þ � � � þ ϕi;N hxN i:
ðB5Þ

If we repeat the same procedure by multiplying
xjpðx1; x2;…; xN Þdx1dx2 � � � dxN , we then obtain

hyiðt; τÞxji ¼ ϕi;0hxji þ ϕi;1hx1xji þ ϕi;2hx2xji þ � � �
þ ϕi;N hxN xji: ðB6Þ

The following equations will give the coefficients ϕi;j:

2666666664

hyiðt; τÞi
hyiðt; τÞx1i
hyiðt; τÞx2i

..

.

hyiðt; τÞxN i

3777777775
¼

2666666664

1 hx1i hx2i � � � hxN i
hx1i hx21i hx1x2i � � � hx1xN i
hx2i hx1x2i hx22i � � � hx2xN i
..
. ..

. ..
. ..

.

hxN i hx1xN i hx2xN i � � � hx2N i

3777777775
·

2666666664

ϕi;0

ϕi;1

ϕi;2

..

.

ϕi;N

3777777775
: ðB7Þ

Using the definition yi ¼ xiðtþ τÞ − xiðtÞ, the problem
of calculating ϕi;jðτÞ, Ai;j ¼ limτ→0 ϕi;jðτÞ=τ, and αi ¼
limτ→0 ϕi;0ðτÞ=τ will be reduced to calculating correlation
functions of hxiðtþ τÞxjðtÞi and hxiðtÞxjðtÞi. Equation (B7)
is a linear set of equations for ϕi;j, and the values of these
coefficients are a complex mixture of all two-point correla-
tion functions of multivariate time series in time lags 0 and τ.
To meet the limit τ → 0, we can calculate ϕi;jðτÞ for

τ ¼ dt; 2dt;…; kdt (here, dt is the inverse of the sampling
rate used for data acquisition), and subsequently, a linear
regression is performed for the first three time lags to
find αi and Ai;j [89]. An alternative approximation for
constants αi and matrix A is to use ϕi;0ðτ ¼ dtÞ=dt and
Ai;j ¼ ϕi;jðτ ¼ dtÞ=dt, respectively [15].
We note that for stationary and zero-meanN -dimensional

time series, one finds hyiðt; τÞi ¼ hxiðtþ τÞ − xiðtÞi ¼ 0,
where hxiðtþ τÞi ¼ hxiðtÞi. Plugging the stationarity con-
dition hyiðt; τÞi ¼ 0 and zero mean hxiðtÞi ¼ 0 properties of
N -dimensional time series into Eq. (B7), we find ϕi;0 ¼ 0,
which gives αi ¼ 0.

APPENDIX C: DRIFT VECTOR:
HIGHER-ORDER INTERACTIONS

For the higher-order terms in Eq. (B1) [and Eq. (3) in the
main text], the procedure to find the Kramers-Moyal

coefficients is the same, and the interaction matrices can
be given in terms of statistical moments and small-lag
correlation functions of the N -dimensional time series. To
consider higher-order interactions, e.g., up to third order in
xj, the right-hand side of Eq. (B4) can be written as

hyiðt;τÞijxðtÞ¼x¼ðx1;x2;…;xN Þ

¼ α̃iþ
X
j

ϕi;jxjþ
X
j;k

ψ i;jkxjxkþ
X
j;k;l

γi;jklxjxkxl; ðC1Þ

where ði; j; k; lÞ ¼ 1;…;N . Here, the τ-dependent α̃i and
matrices ϕi;j;ψ i;jk, and γi;jkl are related to interaction
matrices A, C, and E as Ai;j ¼ limτ→0 ϕi;jðτÞ=τ, Ci;jk ¼
limτ→0 ψ i;jkðτÞ=τ, and Ei;jkl ¼ limτ→0 γi;jklðτÞ=τ, respec-
tively. Additionally, αi ¼ limτ→0 α̃iðτÞ=τ. Similar to the
linear case, we can multiply both sides of Eq. (C1) by
the N -point joint probability distribution function
pðx1; x2;…; xN Þ, with xp, xpxq, and xpxqxr, and find

hyiðt; τÞi ¼ α̃i þ
X
j

ϕi;jhxji þ
X
j;k

ψ i;jkhxjxpi

þ
X
k;l;m

γij;klmhxkxlxmi; ðC2Þ
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hyiðt; τÞxpi ¼ α̃ihxpi þ
X
j

ϕi;jhxjxpi þ
X
j;k

ψ i;jkhxjxkxpi þ
X
j;k;l

γi;jklhxjxkxlxpi; ðC3Þ

hyiðt; τÞxpxqi ¼ α̃ihxpxqi þ
X
j

ϕi;jhxjxpxqi þ
X
j;k

ψ i;jkhxjxkxpxqi þ
X
j;k;l

γi;jklhxjxkxlxpxqi; ðC4Þ

hyiðt; τÞxpxqxri ¼ α̃ihxpxqxri þ
X
j

ϕi;jhxjxpxqxri þ
X
j;k

ψ i;jkhxjxkxpxqxri þ
X
j;k;l

γi;jklhxjxkxlxpxqxri: ðC5Þ

Therefore, we can find the unknown coefficients in the expansion (C1) as the solution of the following set of linear
equations:

2666666666666666666666666666666664

hyiðt;τÞi
hyiðt;τÞx1i

..

.

hyiðt;τÞxN i
hyiðt;τÞx1x1i

..

.

..

.

hyiðt;τÞxN xN i
hyiðt;τÞx1x1x1i

..

.

..

.

..

.

hyiðt;τÞxN xN xN i

3777777777777777777777777777777775

¼

2666666666666666666666666666666666664

1 hx1i ��� hxN i hx21i ������ hx2N i hx31i ��������� hx3N i
hx1i hx21i ��� hx1xN i hx31i ������ hx1x2N i hx41i ��������� hx1x3N i
..
. ..

. . .
. ..

. ..
. ..

. ..
. ..

. ..
.

hxN i hx1xN i ��� hx2N i hx1x2N i ������ hx3N i hx31xN i ������ hx4N i
hx21i hx31i ��� hx21xN i hx41i ������ hx21x2N i hx51i ������ hx21x3N i
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

hx2N i hx1x2N i ��� hx3N i hx21x2N i ������ hx4N i hx31x2N i ������ hx5N i
hx31i hx41i ��� hx31xN i hx51i ������ hx31x2N i hx61i ������ hx31x3N i
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

hx3N i hx1x3N i ��� hx41i hx21x3N i ������ hx5N i hx31x3N i ������ hx6N i

3777777777777777777777777777777777775

·

2666666666666666666666666666666664

α̃i

ϕi;1

..

.

ϕi;N

ψ i;11

..

.

..

.

ψ i;NN

γi;111

..

.

..

.

..

.

γi;NNN

3777777777777777777777777777777775

: ðC6Þ

To approach the limit as τ → 0, we can calculate
αiðτÞ ¼ α̃iðτÞ=τ, Ai;jðτÞ ¼ ϕi;jðτÞ=τ, Ci;jkðτÞ ¼ ψ i;jkðτÞ=τ,
and Ei;jklðτÞ ¼ γi;jklðτÞ=τ, for τ ¼ dt; 2dt;…; kdt, and
apply a linear regression to their estimated values for the
first three time lags [89]. An alternative method for
approximating the coupling strengths is to estimate them
at τ ¼ dt [15]. The existence and uniqueness of the
estimated elements of matrices or tensors α, A, C and E
are presented in Appendix F.

APPENDIX D: DIFFUSION COEFFICIENTS

The diffusion matrix is defined as [15,53]

Dð2Þ
ij ðxÞ ¼ lim

τ→0

1

τ
hðxiðtþ τÞ − xiðtÞÞ

× ðxjðtþ τÞ − xjðtÞÞijxðtÞ¼x¼ðx1;x2;…;xN Þ: ðD1Þ

We define yijðt;τÞ¼ (xiðtþτÞ−xiðtÞ)(xjðtþτÞ−xjðtÞ),
and similar to the expansion of Eq. (C1), we can expand
the diffusion matrix. Therefore, we write

hyijðt; τÞijx1;x2;…;xN ¼ α̃ij þ
X
k

ϕij;kxk þ
X
k;l

ψ ij;klxkxl

þ
X
k;l;m

γij;klmxkxlxm; ðD2Þ

where all matrices αij, etc., are τ dependent and the
zero limit τ → 0 should be taken. Similar to the drift
vector expansion, we can multiply both sides of
Eq. (D2) by the N -point joint probability distribution
function pðx1; x2;…; xN Þ, with xp, xpxq, and xpxqxr, and
find
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hyijðt; τÞi ¼ α̃ij þ
X
k

ϕij;khxki þ
X
k;l

ψ ij;klhxkxli þ
X
k;l;m

γij;klmhxkxlxmi; ðD3Þ

hyijðt; τÞxpi ¼ α̃ijhxpi þ
X
k

ϕij;khxkxpi þ
X
k;l

ψ ij;klhxkxlxpi þ
X
k;l;m

γij;klmhxkxlxmxpi; ðD4Þ

hyijðt; τÞxpxqi ¼ α̃ijhxpxqi þ
X
k

ϕij;khxkxpxqi þ
X
k;l

ψ ij;klhxkxlxpxqi þ
X
k;l;m

γij;klmhxkxlxmxpxqi; ðD5Þ

hyijðt; τÞxpxqxri ¼ α̃ijhxpxqxri þ
X
k

ϕij;khxkxpxqxri þ
X
k;l

ψ ij;klhxkxlxpxqxri þ
X
k;l;m

γij;klmhxkxlxmxpxqxri: ðD6Þ

For each element Dð2Þ
ij ðxÞ in the diffusion matrix expansion, we have m ¼ ½ðN þ ZÞ!=N !Z!� unknown coefficients.

Therefore, we find the unknown coefficients in the expansion (D2) as the solution of the following set of linear equations:

2666666666666666666666666666666664

hyijðt;τÞi
hyijðt;τÞx1i

..

.

hyijðt;τÞxN i
hyijðt;τÞx1x1i

..

.

..

.

hyijðt;τÞxN xN i
hyijðt;τÞx1x1x1i

..

.

..

.

..

.

hyijðt;τÞxN xN xN i

3777777777777777777777777777777775

¼

2666666666666666666666666666666666664

1 hx1i ��� hxN i hx21i ������ hx2N i hx31i ��������� hx3N i
hx1i hx21i ��� hx1xN i hx31i ������ hx1x2N i hx41i ��������� hx1x3N i
..
. ..

. . .
. ..

. ..
. ..

. ..
. ..

. ..
.

hxN i hx1xN i ��� hx2N i hx1x2N i ������ hx3N i hx31xN i ������ hx4N i
hx21i hx31i ��� hx21xN i hx41i ������ hx21x2N i hx51i ������ hx21x3N i
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

hx2N i hx1x2N i ��� hx3N i hx21x2N i ������ hx4N i hx31x2N i ������ hx5N i
hx31i hx41i ��� hx31xN i hx51i ������ hx31x2N i hx61i ������ hx31x3N i
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

hx3N i hx1x3N i ��� hx41i hx21x3N i ������ hx5N i hx31x3N i ������ hx6N i

3777777777777777777777777777777775

·

2666666666666666666666666666666664

α̃ij

ϕij;1

..

.

ϕij;N

ψ ij;11

..

.

..

.

ψ ij;NN

γij;111

..

.

..

.

..

.

γij;NNN

3777777777777777777777777777777775

; ðD7Þ

where i; j ¼ 1;…;N . The interaction matrices from
diffusion coefficients are Pij ¼ limτ→0 α̃ij=τ, Qij;k ¼
limτ→0 ϕij;kðτÞ=τ, Rij;kl ¼ limτ→0 ψ ij;klðτÞ=τ, and Sij;kl ¼
limτ→0 γij;klmðτÞ=τ. The process of approaching τ to zero is
akin to the approach used for the drift vector. The existence
and uniqueness of the estimated elements of tensors Pij,
Qij;k, Rij;kl, and Sij;klm are presented in Appendix F.

APPENDIX E: DERIVING THE MATRIX GðxÞ
WITH ELEMENTS gij FROM THE DIFFUSION

COEFFICIENTS Dð2Þ
ij ðxÞ

Several possibilities exist for constructing the matrix G
from the symmetric diffusion matrix Dð2Þ, i.e., Dð2Þðx; tÞ ¼
GGT [15]. For a 2 × 2 diffusion matrix with

�
a c

c b

�
¼ GGT;

the matrix G can be produced by the lower triangular
matrix Gl, the upper triangular matrix Gu, and the
symmetric matrix Gs as

Gl ¼
 ffiffiffi

a
p

0

cffiffi
a

p
ffiffiffiffiffiffiffiffiffiffiffiffi
b − c2

a

q !
;

Gu ¼
 ffiffiffiffiffiffiffiffiffiffiffiffi

b − c2
a

q
cffiffi
a

p

0
ffiffiffi
b

p
!
;

Gs ¼
�
h k

k l

�
; ðE1Þ
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respectively. In the symmetric case, we need to have
h2 þ k2 ¼ a, k2 þ l2 ¼ b, and kðlþ hÞ ¼ c, resulting in
nine positive solutions for k, h, and l [15]. The generali-
zation of the results for a higher-dimensional diffusion
matrix N ≥ 3 is readily shown for Gl and Gu [15]. For
example, the lower or upper triangular matrix may be
determined by the Cholesky decomposition method, which
is also applicable to higher dimensions [90,91]. Therefore,
using the relation between the diffusion matrixDð2Þ and the
matrix G, we may choose one of the possible forms for G
via relations (E1) to compute its entries.
In all examples with dimensionN ≥ 2, we use the upper

triangular matrix construction for matrix G from the

diffusion matrix Dð2Þ
ij ðxÞ.

Another method to derive the matrix elements gij in any

dimension N from the diffusion matrix Dð2Þ
ij ðxÞ is as

follows. Since Dð2Þ
ij ðxÞ is a symmetrical, positive-

semidefinite matrix, it has only real, non-negative eigen-
values λ1;…; λN [15,92]. Therefore, an orthogonal
transformation U can be found which diagonalizes Dð2Þ

such that UTDð2ÞU ¼ diagðλ1;…; λN Þ. When taking the
positive root of the eigenvalues and transforming them
back, for each element of G, we obtain

gij ¼ ðUdiagð
ffiffiffiffiffi
λ1

p
;…;

ffiffiffiffiffiffi
λN

p
ÞUTÞij:

For the correlated white noise specified in Eq. (1), i.e.,
hηiðtÞηjðt0Þi ¼ hijδðt − t0Þ, where the matrix h denotes
the covariance matrix, the diffusion coefficients can be
expressed as Dð2ÞðxÞ ¼ GhGT. Importantly, with the Itô
interpretation, the drift term remains unaffected. This
finding arises from the observation that in Eq. (1), when

computing the diffusion matrix Dð2Þ
ij ðxÞ, one encounters

the term hGðx; tÞηðtÞGðx; t0Þηðt0Þi, leading to the relation
Dð2ÞðxÞ ¼ GhGT.

1. Multivariate Gaussian distribution

For an N -dimensional stochastic dynamical system
with pairwise interactions and additive noise, denoted
by constant A and P in Eqs. (3) and (11), the joint
probability distribution of the state variables will follow
an N -dimensional Gaussian distribution.
Consider an N -dimensional linear system with addi-

tive noise ηðtÞ (multivariate Ornstein-Uhlenbeck process)
given by

d
dt

xðtÞ ¼ AxðtÞ þ PηðtÞ; ðE2Þ

where matrices A and P are constant N ×N matrices.
Here, ηi denote zero-mean, mutually independent

Gaussian white noise with intensity 1, i.e., hηiðt1Þηjðt2Þi ¼
δi;jδðt2 − t1Þ, which have a multivariate Gaussian distri-
bution pðη1; η2;…; ηN Þ.
If the real parts of the eigenvalues of A are negative, the

stationary probability density function of xi is expressed as:

pðxÞ ¼ 1

ð2πÞN =2
ffiffiffiffiffiffiffiffiffiffi
detΣ

p exp

�
−
1

2
xTΣ−1x

�
ðE3Þ

where the matrix Σ is determined from the Lyapunov
equation AΣþ ΣAT ¼ −PPT. This expression (E3) repre-
sents the stationary probability density function for the given
N -dimensional linear system with additive Gaussian
white noise.

APPENDIX F: EXISTENCE AND UNIQUENESS
OF ESTIMATED COUPLING STRENGTHS

AND ADJACENCY MATRICES

The main idea of our methodology for finding the
coupling strengths in Eqs. (C6) and (D7) and, in addition,
the adjacency matrices in Eq. (I7) is based on solving a
system of linear equations. The Rouché-Capelli theorem
determines the existence and uniqueness of the solutions
to a linear system [93]. For a given number of unknowns,
the number of solutions depends only on the rank of the
coefficient matrix and the rank of the corresponding
augmented matrix. According to this theorem, a system
of linear equations has no solutions if the rank of the
augmented matrix is greater than the rank of the
coefficient matrix; on the other hand, if the ranks of
the two matrices are equal, there must exist at least one
solution. The solution is unique if and only if the rank is
equal to the number of variables. Otherwise, the general
solution has k free parameters, where k is the difference
between the rank and the number of variables; in this
case, there is an infinite number of solutions to the linear
system.

APPENDIX G: ASSESSING THE
METHOD’S ACCURACY

1. Sources of error in estimating the strengths
of interactions

The core concept of our methodology for determining
the strength of an interaction, outlined in Eqs. (C6) and
(D7), involves solving a set of linear equations. We define
the right-hand side of Eqs. (C6) and (D7) as the vector ϕ,
which encompasses all strengths of interactions, and we
represent the left-hand side as Y. Additionally, we denote
the matrix of statistical moments as M. Consequently, we
seek to find the solution to the set of linear equations
expressed as

Y ¼ Mϕ: ðG1Þ
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The solution is considered unique if and only if the rank of
the matrix of statistical moments matches the number of
variables, as detailed in Appendix F. The characteristics and
properties of matrix M and of the N -dimensional time
series (including potential oversampling, i.e., having mea-
sured the same time series for at least two state variables)
can significantly influence the convergence behavior and
reliability of the estimation process. Notably, if matrix M
possesses eigenvalues that are close to zero, this can
result in slower convergence or even numerical instability
during the estimation procedures of the strengths of
interaction. In such scenarios, it becomes essential to
employ regularization techniques (such as stochastic
gradient descent optimization) to guard against overfitting
or to consider methods for reducing dimensionality [94].
We did not use any regularization techniques for the
examples presented in this paper. We relied on linear and
nonlinear solvers. The code [87] accompanying this work
contains all the necessary details for calculating both
pairwise and higher-order interactions from multivariate
time series data.
An error in estimating the strengths of interactions

from ϕ in Eq. (G1) originates from modifications to Y
(Y → Y þ δY), to M (M → Mþ δM), and to ϕ
(ϕ → ϕþ δϕ), given by

δϕ ¼ ðMTMÞ−1MTðδY − δMϕÞ: ðG2Þ

It is worth noting that we account for the possibility thatM
might not be directly invertible. Equation (G2) provides us
with error propagation, showing how δϕmeasures errors in
M and Y, which propagate through the solution process,
affecting the solution ϕ. By varying the order of inter-
actions Z (Z ¼ 0; 1;…), we can find errors in estimating
the strengths of interactions δϕ.
To determine the errors in the estimation ofM and Y, we

consider that the vector Y and the matrix M encompass
various statistical moments, including hxki and mixed
moments. When we have a single realization of an
N -dimensional time series, we can employ the following
approaches to estimate the error of these statistical
moments:

(i) A straightforward method is to estimate
their mean squared error given by

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½PN

i¼1ðxki − hxkiÞ2=NðN − 1Þ�
q

, where N is

the number of data points.
(ii) Alternatively, we can utilize the bootstrap method to

estimate the moments’ confidence intervals.
By utilizing Eq. (G2) and possessing knowledge of the
errors associated with M and Y, we can calculate the error
δϕ in the estimations of the strengths of interactions. This
error is impacted by the integration time T as well as by the
order of interactions Z. Finally, in cases where we have
access to several realizations ofN -dimensional time series,

we can perform ensemble averaging of the estimated
strengths of interactions from each realization.
For all examples presented in this paper, we report—for

different integration times T—means and errors (mean
squared error from all strengths of interactions in each
realization) of the strengths of interactions from 50 real-
izations of applied noise.

2. Comparing true and estimated drift terms:
Coefficient of determination

In cases where we have access to ground truth (e.g.,
polynomial or nonpolynomial drift functions), we can
assess the similarity between two drift functions—F, which
is based on known (preset) coupling strengths and param-
eters, and F̃, which we estimate using our method—by
calculating the coefficient of determination (R2-score). In
the case of a perfect match, R2 ¼ 1.
In higher dimensions (such as for N -dimensional

multivariate time series), the drift function F in the
dynamical equation (3) comprises preset vectors, matrices,
and tensors denoted as αi, Aij, Cijk, and Eijkl. Given an
N -dimensional multivariate time series with N data points
and sampling interval dt, we can estimate α̃i, Ãij, C̃ijk, and
Ẽijkl (ði; j; k; lÞ ¼ 1; 2;…;N ) using the relations (C6). To
assess the quality of these estimations, we examine the time
dependency of F(xðtÞ) and of F̃(xðtÞ) in Eq. (3) by
substituting the simulated xiðtÞ. This method involves
preserving the simulated N -dimensional multivariate
time series xðtÞ and then reinserting them into the expres-
sions for the true drift function F(xðtÞ) and the estimated
drift F̃(xðtÞ). This process yields two sets of time series,
each representing the values of the two drifts at each time
point t. We perform these substitutions for each component
of the two drift functions. Since the precision of the
estimated drift function depends on integration time T,
R2 values will also be influenced by T. For all dynamical
equations (A1)–(A7), we report R2 values for various T for
each component of the respective drift function.
A similar analysis can be conducted for the stochastic

component G in Eq. (1). However, in the majority of our
examples, we employed additive noise, which means that
the tensor G has constant values and is independent of x.

3. Comparing true and reconstructed dynamics:
Kolmogorov-Smirnov test

Having estimated functions and parameters for both the
deterministic drift FðxðtÞÞ and the stochastic partGðx; tÞ in
the dynamical equation (1) allows us to generate time series
of the dynamics and to compare them with time series
generated with the preset functions and parameters. To this
end, we estimate the CDFs for each of the aforementioned
time series (F e andF p, each with the maximum integration
time T; the subscript “e” and “p” refer to the estimated,
respectively, preset CDF) and use the nonparametric
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two-sample KS test to determine whether the two CDFs
differ. The maximum “distance” between the two CDFs,

DKS ¼ sup
x
jF eðxÞ − F pðxÞj; ðG3Þ

vanishes for equal CDFs. For all dynamical equations
(A1)–(A7), we report DKS and the corresponding signifi-
cance level pKS.
In Fig. 9, we demonstrate, with the true and recon-

structed dynamics from Example A1, the dependence of the
KS statistic DKS on integration time T. Clearly, DKS
decreases with increasing T, and we observe a similar
dependence for the other examples A2–A7. We note that
for some realizations of the applied noise, the reconstructed
dynamics might be unstable for the same integration time
step dt, and one may need to reduce dt.

APPENDIX H: EXEMPLARY NONLINEAR
DYNAMICAL SYSTEMS

In the following, we provide details for the exemplary
low- and high-dimensional nonlinear dynamical systems
investigated in this work to demonstrate the suitability of
our method. These systems comprise dynamical equations
that are polynomial or nonpolynomial functions of the state
variables as well as a stochastic process that undergoes a
noise-induced transition by changing the intensity of the
external noise; the deterministic component is a given
function with constant coefficients.

1. Example A1

The system

ẋ1 ¼F1ðx1;x2Þ¼ 2x1−x2þðx21þx22Þð−5x1−7.5x2Þ;
ẋ2 ¼F2ðx1;x2Þ¼ x1−2x2þðx21þx22Þð7.5x1−5x2Þ ðH1Þ

contains preset higher-order interactions up to third order
and possesses three fixed points: one saddle and two stable
spirals. The values of the estimated coefficients are given in
Fig. 1; the two-dimensional phase portrait of Eq. (H1) is
shown in Fig. 10. The noisy trajectory (see Fig. 1 in the
main text) exhibits transitions between the two stable states.

2. Example A2

A dynamical model of cancer growth is given by the
following three-dimensional, nonpolynomial dynamical
equations containing a rational term [59]:

ẋ1 ¼F1ðx1;x2;x3Þ¼ x1ð1−x1Þ−a12x1x2−a13x1x3; ðH2Þ

ẋ2 ¼ F2ðx1; x2; x3Þ ¼ r2x2ð1 − x2Þ − a21x2x1; ðH3Þ

ẋ3 ¼ F3ðx1; x2; x3Þ ¼ r3
x1x3

x1 þ k3
− a31x1x3 − d3x3: ðH4Þ

Equation (H2) gives the rate of change in the population of
the tumor cells with time t. The first term of Eq. (H2) refers
to the logistic growth of the tumor cells in the absence of
any effect from other cell populations. The competition
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FIG. 9. KS statistic of a comparison between reset and reconstructed dynamics of Example A1 [Eq. (12); panel (a), x1ðtÞ; panel (b),
x2ðtÞ]. We show distributions of DKS (left) and pKS values (right) (blue- and orange-shaded areas) over 50 realizations of applied noise.
Black lines indicate the first and the third quartile of the distributions, and white dots indicate the median values.
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between host cells x2 and tumor cells x1 results in a loss
term of tumor cells, which is given by a12x1x2. The term
a13x1x3 refers to the killing rate of tumor cells by the
effector cells x3. In Eq. (H3), the host cells x2 also grow
logistically. The tumor cells inactivate the healthy cells at a
rate of a21. The last equation of the model describes the
change in the effector immune cell population with time t.
The first term of Eq. (H4) illustrates the stimulation of the
immune system by the tumor cells with tumor-specific
antigens. The rate of recognition of the tumor cells by the
immune system depends on the antigenicity of the tumor

cells. Since this recognition process is very complex, a
simplified description based on aMichaelis-Menten kinetics
[95] has been assumed, whereby the maximum stimulation
rate is r3 and the half-saturation constant is k3. The effector
cells are inactivated by the tumor cells at a rate a31. Natural
mortality of the effector cells is modeled proportionally to
the population densitywith a rate d3.We note that all control
parameters in the equations are positive.
To determine the eight parameters in Eqs. (H2)–(H4), we

multiply the discretized equation (H2) by x1 and x2, and
after ensemble averaging, we find the linear equations

hðx1ðtþ τÞ − x1ðtÞÞx1ðtÞi ¼ hx21ð1 − x1Þiτ − a12hx21x2iτ
− a13hx21x3iτ;

hðx1ðtþ τÞ − x1ðtÞÞx2ðtÞi ¼ hx1x2ð1 − x1Þiτ − a12hx1x22iτ
− a13hx1x2x3iτ: ðH5Þ

Equation (H5) provides two linear equations for the
coefficients a12 and a13. Similarly, we can find two other
equations for the unknowns r2 and a21 by multiplying the
discretized equation (H3) by x1 and x2 as

hðx2ðtþ τÞ−x2ðtÞÞx1ðtÞi¼ r2hx1x2ð1−x2Þiτ−a21hx21x2iτ;
hðx2ðtþ τÞ−x2ðtÞÞx2ðtÞi¼ r2hx22ð1−x2Þiτ−a21hx1x22iτ;

ðH6Þ

which is a linear set of equations for r2 and a21.
Likewise, for the remaining coefficients, r3, a31, k3 and

d3, we find four equations by multiplying ðx1 þ k3Þ,
ðx1 þ k3Þx1, ðx1 þ k3Þx2, and ðx1 þ k3Þx3 as

hðx3ðtþ τÞ − x3ðtÞÞðx1ðtÞ þ k3Þi ¼ ½r3hx1x3i − a31hx1x3ðx1 þ k3Þi − d3hx3ðx1 þ k3Þi�τ;
hðx3ðtþ τÞ − x3ðtÞÞðx1ðtÞ þ k3Þx1ðtÞi ¼ ½r3hx21x3i − a31hx21x3ðx1 þ k3Þi − d3hx1x3ðx1 þ k3Þi�τ;
hðx3ðtþ τÞ − x3ðtÞÞðx1ðtÞ þ k3Þx2ðtÞi ¼ ½r3hx1x2x3i − a31hx1x2x3ðx1 þ k3Þi − d3hx2x3ðx1 þ k3Þi�τ;
hðx3ðtþ τÞ − x3ðtÞÞðx1ðtÞ þ k3Þx3ðtÞi ¼ ½r3hx1x23i − a31hx1x23ðx1 þ k3Þi − d3hx23ðx1 þ k3Þi�τ; ðH7Þ

which can be written as four nonlinear equations for r3, a31, k3, and d3,

hðx3ðtþ τÞ − x3ðtÞÞx1ðtÞi þ k3hðx3ðtþ τÞ − x3ðtÞÞi
¼ ½r3hx1x3i − a31hx21x3i − a31k3hx1x3i − d3hx3x1i − d3k3hx3i�τ; ðH8Þ

hðx3ðtþ τÞ − x3ðtÞÞx21ðtÞi þ k3hðx3ðtþ τÞ − x3Þx1ðtÞi
¼ ½r3hx21x3i − a31hx31x3i − a31k3hx21x3i − d3hx21x3i − d3k3hx1x3i�τ; ðH9Þ

hðx3ðtþ τÞ − x3ðtÞÞx1ðtÞx2ðtÞi þ k3hðx3ðtþ τÞ − x3ðtÞÞx2ðtÞi
¼ ½r3hx1x2x3i − a31hx21x2x3i − a31k3hx1x2x3i − d3hx1x2x3i − d3k3hx2x3i�τ; ðH10Þ

hðx3ðtþ τÞ − x3ðtÞÞx1ðtÞx3ðtÞi þ k3hðx3ðtþ τÞ − x3ðtÞÞx3ðtÞi
¼ ½r3hx1x23i − a31hx21x23i − a31k3hx1x23i − d3hx1x23i − d3k3hx23i�τ: ðH11Þ

x 1

x
2

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75
−1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

1.00

5

10

15

20

25

FIG. 10. Nullclines F1ðx1; x2Þ ¼ 0 (blue) and F2ðx1; x2Þ ¼ 0
(green dashed lines) and phase portrait for system (H1). The
color code of trajectories represents the magnitude of the driftffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
1ðx1; x2Þ þ F2

2ðx1; x2Þ
p

.

REVEALING HIGHER-ORDER INTERACTIONS IN HIGH- … PHYS. REV. X 14, 011050 (2024)

011050-21



For our investigations, we chose control parameter settings
as a21 ¼ 1.5, d3 ¼ 0.5, r2 ¼ 0.6, a31 ¼ 0.2, r3 ¼ 4.5,
a13 ¼ 2.5, k3 ¼ 1, and a12 ¼ 1, for which the dynamics
in state space exhibits a chaotic attractor [59]. The
estimated values provided by our approach are given
in Fig. 2.

3. Example A3

The Malthus-Verhulst model was originally proposed to
describe the evolution of a biological population. Let n
denote the number (or density) of individuals of a certain
population, which will change due to growth, death, and
competition. In the simplest version, birth and death rates
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FIG. 11. Absolute differences jΔj between preset and estimated strengths of interactions in the drift terms of Example A1 for different
noise intensities [(a) σ ¼ 0.2; (b) σ ¼ 0.4] and for different integration times T. Differences converge exponentially to zero as expð−κTÞ,
where κ∈ ð1 × 10−4; 4 × 10−4Þ for σ ¼ 0.2 and where κ∈ ð5 × 10−4; 7 × 10−4Þ for σ ¼ 0.4.
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are assumed to be proportional to n, while competition is
proportional to n2 [60]:

ṅðtÞ ¼ ν̃nðtÞ − βn2ðtÞ: ðH12Þ
The constant ν̃ is the net growth rate or decay rate, for ν̃ > 0
and ν̃ < 0, respectively. The parameter β can be removed
by using the scaling transformation nðtÞ → xðtÞ ¼ βnðtÞ.
Suppose that the original growth and/or death rates ν̃
fluctuate in time. Assume that ν̃ðtÞ ¼ νþ ΓηðtÞ, with
constant noise intensity Γ and constant ν, where ηðtÞ is
a Gaussian white noise. The associated stochastic differ-
ential equation is then a multiplicative process,

ẋðtÞ ¼ −x2ðtÞ þ νxðtÞ þ ΓxðtÞηðtÞ: ðH13Þ
Let us find the PDF for the random variable xðtÞ to
investigate possible abrupt changes of behavior as the
parameters change. The PDF pðx; tÞ of x at time t satisfies
the following Fokker-Planck equation:

∂

∂t
pðx; tÞ ¼ ∂

∂x
½ð−x2 þ νxÞpðx; tÞ�

þ Γ2
∂
2

∂x2
(x2pðx; tÞ): ðH14Þ

Its stationary solution in the interval 0 < x < ∞ is

psðxÞ ¼ cxðν=Γ2−1Þ exp−
�
x
Γ2

�
; ðH15Þ

where c is the normalization constant. We note that there is
a drastic change in the character of this stationary distri-
bution when ν crosses the value Γ2: When 0 < ν < Γ2, ps

diverges at x ¼ 0, while for ν > Γ2, psð0Þ ¼ 0 (cf. Fig. 12).
We note that the drift coefficient −x2 þ νx is independent
of Γ, and, as we expected, the estimated drift coefficients
for the two values of Γ∈ f0.6; 1.1g (see Fig. 3) are
independent of Γ, although the simulated time series exhibit
a different type of fluctuation as demonstrated in Fig. 3(a).

4. Example A4

Consider the dynamical equations

ẋ1 ¼ F1ðx1; x2Þ ¼ x1 − x1x2;

ẋ2 ¼ F2ðx1; x2Þ ¼ x21 − x2: ðH16Þ

The flow has three fixed points: (0,0), (1,1), and ð−1; 1Þ,
which are one saddle and two attractive spirals, respec-
tively. The values of the estimated coefficients are given
in Fig. 14. The corresponding two-dimensional phase
portrait of Eq. (H16) is shown in Fig. 13. When noise is
applied to this system, as depicted in Fig. 14, the dynamics
shows a hopping dynamics between the two attractors
corresponding to transitions due to the noise, where the
critical noise intensity is 0.

5. Example A5

The FitzHugh-Nagumo model is given by the dynamical
equations

ẋ1 ¼ F1ðx1; x2Þ ¼ x1 −
x31
3
− x2 þ I;

ẋ2 ¼ F2ðx1; x2Þ ¼ 0.08ðx1 þ 0.7 − 0.75x2Þ: ðH17Þ
Here, x1 is the membrane potential, x2 is a recovery
variable, and I is the magnitude of an external stimulus
current. This model is a two-dimensional simplification
of the Hodgkin-Huxley model of spike generation in
squid giant axons. The estimated values of the coefficients
are given in Fig. 16. The magnitude of the stimulus current
is fixed at I ¼ 0.5. The parameters of the system are
taken from the oscillatory regime of the FitzHugh-Nagumo

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

P s
(x

)

� = 1
� = 1

� = 0.6
� = 1.1

FIG. 12. Stationary solution ps of the Fokker–Planck equa-
tion (H14) for cases (ν ¼ 1; Γ ¼ 0.6) and (ν ¼ 1; Γ ¼ 1.1). There
is a drastic change in the character of ps when ν crosses the value
Γ2: when 0 < ν < Γ2, ps diverges at x ¼ 0, while for ν > Γ2,
psð0Þ ¼ 0. As it can be seen from Eq. (H15), ps has diverging
and regular behaviors at the origin for ν=Γ2 − 1 < 0 and
ν=Γ2 − 1 > 0, respectively.
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FIG. 13. Same as Fig. 10, but for system (H16).
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model; i.e., the only attractor is a limit cycle. The
corresponding two-dimensional phase portrait of
Eq. (H17) is shown in Fig. 15.

6. Example A6

Consider the three-dimensional system of dynamical
equations

ẋ1 ¼F1ðx1;x2;x3Þ
¼ x1½ðax2−x3Þ− ða−1Þðx1x2þx1x3þx2x3Þ�;

ẋ2 ¼F2ðx1;x2;x3Þ
¼ x2½ðax3−x1Þ− ða−1Þðx1x2þx1x3þx2x3Þ�;

ẋ3 ¼F3ðx1;x2;x3Þ
¼ x3½ðax1−x2Þ− ða−1Þðx1x2þx1x3þx2x3Þ�; ðH18Þ
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FIG. 14. SameasFig.1but forExampleA4,where thedynamicsaregivenbyEq. (H16) (T ¼ 10000,dt ¼ 0.05,
ffiffiffi
σ

p ¼ 0.2).Forx2ðtÞ,KS
test indicated no differences between true and estimated CDFs (DKS ¼ 0.03; pKS < 10−4). For x1ðtÞ, we obtained DKS ¼ 0.57 (n.s.).

− 4 − 3 − 2 − 1 0 1 2 3 4
x 1

− 4

− 3

− 2

− 1

0

1

2

3

4

x
2

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

FIG. 15. Same as Fig. 10 but for system (H17).

M. REZA RAHIMI TABAR et al. PHYS. REV. X 14, 011050 (2024)

011050-24



which, for a > 0, is a generalization of the rock-paper-scissors model [96]. The system possesses a fixed point at
ðx�1; x�2; x�3Þ ¼ 1

3
ð1; 1; 1Þ, which is attractive for a > 1. To analyze the simulated time series from Eq. (H19), we transform

the variables xi → yi ¼ xi − 1
3
to shift the fixed point to the origin. The estimated values of the coefficients are given in

Fig. 17. The magnitude of the parameter a is 1.1. The dynamical equations for y1, y2, y3 are

ẏ1 ¼ F1ðy1; y2; y3Þ ¼
�
y1 þ

1

3

��
−0.1y1y2 −

1

15
y1 − 0.1y1y3 þ

31

30
y2 − 0.1y2y3 −

16

15
y3

�
;

ẏ2 ¼ F2ðy1; y2; y3Þ ¼
�
y2 þ

1

3

��
−0.1y2y3 −

1

15
y2 − 0.1y2y1 þ

31

30
y3 − 0.1y1y3 −

16

15
y1

�
;

ẏ3 ¼ F3ðy1; y2; y3Þ ¼
�
y3 þ

1

3

��
−0.1y3y1 −

1

15
y3 − 0.1y3y2 þ

31

30
y1 − 0.1y1y2 −

16

15
y2

�
: ðH19Þ
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FIG. 16. SameasFig.1but forExampleA5,where thedynamicsaregivenbyEq. (H17) (T ¼ 10000,dt ¼ 0.05,
ffiffiffi
σ

p ¼ 0.2).Forx2ðtÞ,KS
test indicated no differences between true and estimated CDFs (DKS ¼ 0.06; pKS < 10−4). For x1ðtÞ, we obtained DKS ¼ 0.15 (n.s.).
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7. Example A7

Consider a nine-dimensional system of dynamical equations [62] given by

ẋ1 ¼ F1ðx1; x2;…; x9Þ ¼ −ab1x1 − x2x4 þ b4x24 þ b3x3x5 − ab2x7;

ẋ2 ¼ F2ðx1; x2;…; x9Þ ¼ −ax2 þ x1x4 − x2x5 þ x4x5 −
a
2
x9;

ẋ3 ¼ F3ðx1; x2;…; x9Þ ¼ −ab1x3 þ x2x4 − b4x22 − b3x1x5 þ ab2x8;

ẋ4 ¼ F4ðx1; x2;…; x9Þ ¼ −ax4 − x2x3 − x2x5 þ x4x5 þ
a
2
x9;
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FIG. 17. Same as Fig. 1 but for Example A6, where the dynamics are given by Eq. (H19) (T ¼ 10000, dt ¼ 0.005,
ffiffiffi
σ

p ¼ 0.01). The
KS test indicated no differences between true and estimated CDFs. [For x1ðtÞ, DKS ¼ 0.11; for x2ðtÞ, DKS ¼ 0.13; and for x1ðtÞ,
DKS ¼ 0.11. Note that pKS < 10−4 for all cases.].
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ẋ5 ¼ F5ðx1; x2;…; x9Þ ¼ −ab5x5 þ
1

2
x22 −

1

2
x24;

ẋ6 ¼ F6ðx1; x2;…; x9Þ ¼ −b6x6 þ x2x9 − x4x9;

ẋ7 ¼ F7ðx1; x2;…; x9Þ ¼ −b1x7 − rx1 þ 2x5x8 − x4x9;

ẋ8 ¼ F8ðx1; x2;…; x9Þ ¼ −b1x8 þ rx3 − 2x5x7 þ x2x9;

ẋ9 ¼ F9ðx1; x2;…; x9Þ ¼ −x9 − rx2 þ rx4 − 2x2x6 þ 2x4x6 þ x4x7 − x2x8; ðH20Þ

where a ¼ 0.5, r ¼ 14.22 and b1 ¼ 3.33, b2 ¼ 0.6,
b3 ¼ 1.2, b4 ¼ 0.2, b5 ¼ 1.33, and b6 ¼ 2.67. We added
independent white noise with intensity

ffiffiffi
σ

p ¼ 0.25 to the
dynamical equations, integrated with a time step dt ¼ 0.01,
and generated time series with different integration times T.
Excerpts of exemplary time series for x1ðtÞ;…; x9ðtÞ, as
well as their CDFs generated from the true drift vector
F(xðtÞ) and diffusion coefficients and using the estimated
drift F̃(xðtÞ) and diffusion for T ¼ 10000, are shown

in Fig. 18. In Fig. 19, we depict the convergence patterns
of estimated nonzero strengths of interaction toward
their preset values as the integration time T increases.
Differences between estimated coefficients of diffusion
terms and preset values for different integration times T
are shown in Fig. 20. Matching (R2-score) between true
drift F(xðtÞ) and estimated drift functions F̃(xðtÞ) based
on the simulated xiðtÞ for different integration times T is
summarized in Fig. 21.
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FIG. 18. Excerpt of exemplary time series of x1ðtÞ; x2ðtÞ; � � � x9ðtÞ with time step dt ¼ 0.01 and additive white noise with
ffiffiffi
σ

p ¼ 0.25.
The dynamics are given by Eq. (H20). We show CDFs of time series generated from the true drift vector F(xðtÞ) and diffusion
coefficient, compared to those using the estimated drift F̃(xðtÞ) and diffusion coefficient for T ¼ 10000. The KS test indicated
no differences between true and estimated CDFs for all time series [DKS ∈ ð0.01; 0.01; 0.07; 0.03; 0.05; 0.04; 0.02; 0.05; 0.03Þ;
pKS < 10−4 in all cases].
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APPENDIX I: NETWORKED HIGHER-ORDER KURAMOTO-SAKAGUCHI PHASE ROTATOR MODEL

In what follows, we present the details of estimations of coupling strengths of the 1-, 2-, and 3-simplex interactions—K1,
K2, and K3—from simulated data of the networked dynamical system (15),

θ̇iðtÞ ¼ ωi þ K1

XN
j¼1

aij sin (θjðtÞ − θiðtÞ)þ K2

XN
ðj;kÞ¼1

cijk sin (2θjðtÞ − θkðtÞ − θiðtÞ)

þ K3

XN
ðj;k;lÞ¼1

eijkl sin (θjðtÞ þ θkðtÞ − θlðtÞ − θiðtÞ): ðI1Þ

For arbitrary K1ij, K2ijk, and K3ijkl, we can reformulate Eq. (I1) in more general terms as

θ̇iðtÞ ¼ ωi þ
XN
j¼1

K1ijaij sin (θjðtÞ − θiðtÞ)þ
XN

ðj;kÞ¼1

K2ijkcijk sin (2θjðtÞ − θkðtÞ − θiðtÞ)

þ
XN

ðj;k;lÞ¼1

K3ijkleijkl sin (θjðtÞ þ θkðtÞ − θlðtÞ − θiðtÞ): ðI2Þ

We discretize Eq. (I1) with time step τ and define yiðt; τÞ ¼ (θiðtþ τÞ − θiðtÞ). Ensemble averaging the resulting equations
over noise realizations, one finds (we will omit the t dependence of phases in the following to simplify notations)

hyiðt; τÞi ¼ αi þ
X
j

ϕi;jhsinðθj − θiÞi þ
X
ðj;kÞ

ψ i;jkhsinð2θj − θk − θiÞi þ
X
ðj;k;lÞ

γi;jklhsinðθj þ θk − θl − θiÞi; ðI3Þ

with ði; j; k; lÞ ¼ 1; 2;…;N , ωi ¼ limτ→0 αi=τ, K1ijaij ¼ limτ→0 ϕij=τ, K2ijkcijk ¼ limτ→0 ψ ijk=τ, and K3ijkleijkl ¼
limτ→0 γijkl=τ. For constant coupling strengths, we have K1ij ¼ K1, K2ijk ¼ K2, and K3ijkl ¼ K3, and the model (I1)
will be recovered.
To find the natural frequencies ωi ¼ limτ→0 αi=τ and coupling strengths K1ijaij, K2ijkcijk, and K3ijkleijkl, we multiply

yiðt; τÞ by Legendre polynomials of orders ðr;m; nÞ as yiðt; τÞPr( cosðθiÞ), yiðt; τÞPr( cosðθiÞ)Pm( cosðθiÞ), and
yiðt; τÞPr( cosðθiÞ)Pm( cosðθiÞ)Pn( cosðθiÞ). Then, after averaging over noise realizations, we find

hyiðt; τÞPr( cosðθiÞ)i ¼ αihPr( cosðθiÞ)i þ
X
j

ϕi;jhsinðθj − θiÞPr( cosðθiÞ)i þ
X
j;k

ψ i;jkhsinð2θj − θk − θiÞPr( cosðθiÞ)i

þ
X
j;k;l

γi;jklhsinðθj þ θk − θl − θiÞPr( cosðθiÞ)i; ðI4Þ

hyiðt; τÞPr( cosðθiÞ)Pm( cosðθiÞ)i ¼ αihPr( cosðθiÞ)Pm( cosðθiÞ)i þ
X
j

ϕi;jhsinðθj − θiÞPr( cosðθiÞ)i

þ
X
j;k

ψ i;jkhsinð2θj − θk − θiÞPr( cosðθiÞ)Pm( cosðθiÞ)i

þ
X
j;k;l

γi;jklhsinðθj þ θk − θl − θiÞPr( cosðθiÞ)Pm( cosðθiÞ)i; ðI5Þ

and

hyiðt; τÞPr( cosðθiÞ)Pm( cosðθiÞ)Pn( cosðθiÞ)i
¼ αihPr( cosðθiÞ)Pm( cosðθiÞ)Pn( cosðθiÞ)i þ

X
j

ϕi;jhsinðθj − θiÞPr( cosðθiÞ)Pn( cosðθiÞ)i

þ
X
j;k

ψ i;jkhsinð2θj − θk − θiÞPr( cosðθiÞ)Pm( cosðθiÞ)Pn( cosðθiÞ)i

þ
X
j;k;l

γi;jklhsinðθj þ θk − θl − θiÞPr( cosðθiÞÞPm( cosðθiÞ)Pn( cosðθiÞ)i: ðI6Þ
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Therefore, for given i, using Eqs. (I3)–(I6), we find the unknown coefficients αi, ϕij, ψ ijk, and γijkl, as the solution of the
following set of linear equations:
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: ðI7Þ

Using Eq. (I7), we calculate the τ-dependent αi, K1ijaij,
K2ijkcijk, and K3ijkleijkl for τ; 2τ; � � �. For instance, the
natural frequencies of the system can be found using
the formula ωi ¼ limτ→0 αi=τ, where αi. The process of

approaching τ to zero is akin to the approach employed in
Appendixes C and D.
For constant coupling strengths K1 ¼ K1ij, K2 ¼ K2ijk,

and K3 ¼ K3ijkl, and undirected networks without any
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self-loops, as in the example presented in the main text
in Fig. 5, we note that aij ¼ aji and aii ¼ 0, and all
permutations in tensors c and e, i.e., cijk ¼ cikj ¼ cjki ¼
� � � and eijkl ¼ eikjl ¼ � � �, will have the same value.
Additionally, in all examples, we have considered the case
that, for given nodes i and j with aij ¼ 0, elements of
higher-order adjacency tensors with indices cijk and eijkl
will be zero. For instance, in Fig. 5 with N ¼ 6, we have
a12 ¼ 0, and therefore, one can write c123 ¼ c132 ¼ c124 ¼
c142 ¼ 0 and e1234 ¼ e1324 ¼ � � � ¼ 0.

APPENDIX J: ESTIMATING THE HIGHEST-
ORDER Z OF EXPANSION (3) FROM DATA

Here, we deal with the question of up to which order Z of
expansion (3) we can reliably estimate the strength of
interactions from a time series of length T ¼ Ndt. This
problem is referred to as the stop condition in Ref. [51]. As
shown in relation (C6), it is necessary to calculate statistical
moments of xi up to order 2Z (denoted as hxm1

i xm2

j …xmo
l i

with m1 þm2 þ � � � þmo ¼ 2Z) to set up matrix A and
tensors C and E in the deterministic part, and tensors P,Q,
R, and S in the stochastic part of the dynamics (see
Appendixes C and D). Then, we can estimate the strengths
of interactions up to order Z.

In order to assess the quality of these calculations, we
first need to ensure that the tails of the joint PDF
xm1

i xm2

j …xmo
l pðxi; xj;…xlÞ are adequately resolved. To

illustrate this, we consider Example A1 with interaction
terms of order 3 for which we need to calculate statisti-
cal moments hxm1

i xm2

j xm3

k � � �i with ðm1 þm2 þ � � �Þ∈
f1; 2;…; 6g. In Fig. 22, we plot x4i pðx1Þ and x6i pðx1Þ
for both components (i∈ f1; 2g) and for different integra-
tion times T. We find that the tails of x42pðx2Þ and x62pðx2Þ
are not resolved for T < 600, which indicates that we
cannot reliably estimate the second- and third-order coef-
ficients with the expansion Eq. (3). For T > 1000, the
tails of x42pðx2Þ and x62pðx2Þ can be sufficiently well
resolved, and we can thus obtain reliable matrices and
tensors. We anticipate that the joint PDF decays more
rapidly at high values of state variables than polynomial
functions.
Next, we perform a more quantitative analysis to

explore how the errors associated with the calculation
of hxm1

i xm2

j xm3

k � � �i depend on the integration time T. We
exemplify this analysis at the nine-dimensional dynamical
system of Example A7 [Eq. (H20)], for which we would
like to calculate statistical moments up to order 2k,
specifically 2,4,6,8, and 10. Figure (23) shows how the
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FIG. 22. Exemplary plots of x4i pðxiÞ and x6i pðxiÞ (i∈ f1; 2g) calculated from time series of the second (top) and first (bottom)
component of Example A1 with different integration times T. Probability distribution functions of variables xi were estimated using a
binning method with 71 bins.
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statistical moments hx2ki i (for k ¼ 1 to k ¼ 5; i takes values
of 3, 7, and 9) vary with the integration time T. For variable
x7ðtÞ, it is evident that the statistical moment hx67i and those
of higher orders do not approach constant values even for
large integration times. By contrast, statistical moments up
to the tenth order of variables x3ðtÞ and x9ðtÞ saturate for
T ≥ 100. Similar dependencies were observed for other
variables [x1ðtÞ; x2ðtÞ, and so on]. Hence, for this example
time series with T ≥ 100, we opt for Z ¼ 2, up to which
we can reliably estimate statistical moments up to the
fourth order. By “reliably,” we mean that the statistical
moments demonstrate stability and convergence for differ-
ent integration times.

In Fig. (24), we present the sizes or errors in the
aforementioned calculations for various integration times
T. These errors exhibit a decreasing trend with increasing T,
approximately following a scaling of 1=ðNdtÞγ with γ ≈ 0.5.
We achieved similar findings for mixed moments that we

present in Fig. 25 for hx21x22i, hx41x22i, hx21x42i, and hx41x42i
calculated from a single realization of a nine-dimensional
time series with various integration times T. All these
mixed moments tended to constant values for T ≥ 100, and
their sizes of errors scaled with T as 1=Tγ , with γ ≈ 0.5.
Additional examples for the stop condition in recon-

structing one-dimensional dynamical systems can be found
in Ref. [51].
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APPENDIX K: IMPACT OF MEASUREMENT
NOISE ON THE ESTIMATION OF
STRENGTHS OF INTERACTIONS

In order to investigate the impact of measurement noise,
we derive an N -dimensional multivariate time series zðtÞ
by adding independent white noise nðtÞ to the time series
xðtÞ, with zðtÞ ¼ xðtÞ þ nðtÞ, where nðtÞ is assumed to
have zero mean and a finite covariance matrix σn and is
independent of xðtÞ. One straightforward method to assess
the presence of measurement noise in a given time series is
to examine the second-order conditional moments,

Kð2Þ
ij ðx;τÞ¼ h(xiðtþ τÞ−xiðtÞ)

× (xjðtþ τÞ−xjðtÞ)ijxðtÞ¼x¼ðx1;x2;…;xN Þ; ðK1Þ

and observe their behavior with changing τ. Dividing

Eq. (K1) by τ yields the diffusion tensor Dð2Þ
ij ðxÞ in

Eq. (10).
We focus on the diagonal elements in Eq. (K1), where

i ¼ j. The theoretical values for Kð2Þ
ii in the absence and

presence of measurement noise are related as Kð2Þ
ii ðzÞ →

Kð2Þ
ii ðxÞ þ 2σ2nii [31]. It is important to note that the term

2σ2nii is independent of τ, and σ2nii represent the diagonal
elements of the covariance matrix σ2n. Therefore, when
calculating the diagonal elements of the diffusion tensor in

Eq. (10), it is necessary to divide Kð2Þ
ii ðzÞ by τ. This division

leads to a divergent behavior with a proportional relation-
ship of 1=τ in the presence of measurement noise as τ
varies. The divergence originates from the constant term

2σ2nii in Kð2Þ
ii ðzÞ. By selecting values of τ ¼ dt; 2dt; � � � and

observing the slope of 1=τ in Kð2Þ
ii ðzÞ=τ, one can initially

estimate σ2nii . Subsequently, with the knowledge of σ2nii , we

can subtract it from Kð2Þ
ii ðzÞ to determine Kð2Þ

ii ðxÞ. By

dividing Kð2Þ
ii ðxÞ by τ and taking the limit τ → 0, we can

derive the second-order Kramers-Moyal coefficients, which
enables us to estimate the strength of interactions in the
stochastic part for the time series xðtÞ.
Measurement noise with a nonzero mean can lead to

a similar divergent behavior when estimating the drift

using Eq. (C6), where we have Kð1Þ
i ðzÞ→Kð1Þ

i ðxÞþhnii.
Consequently, conducting an analysis akin to the one
carried out for second-order conditional moments
[Eq. (K1)] allows us to determine the mean value of the
noise component [15]. Using a similar approach to what we
employed for the second-order Kramers-Moyal coeffi-
cients, we can then deduce the strength of interactions
from the drift function for the time series xðtÞ. In the case
of measurement noise with zero mean, the process for
estimating the strength of interactions will be the same
as the approach used to estimate the strength of interac-
tions for the drift function in the absence of measure-
ment noise.
In the case of empirical time series, it is advisable to

perform this analysis to assess the potential presence of
measurement noise in the collected data.
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[79] F. Krzakala, M. Mézard, F. Sausset, Y. F. Sun, and L.
Zdeborová, Statistical-physics-based reconstruction in
compressed sensing, Phys. Rev. X 2, 021005 (2012).

[80] T. Stankovski, A. Duggento, P. V. E. McClintock, and A.
Stefanovska, Inference of time-evolving coupled dynamical
systems in the presence of noise, Phys. Rev. Lett. 109,
024101 (2012).

[81] J. Casadiego, D. Maoutsa, and M. Timme, Inferring network
connectivity from event timing patterns, Phys. Rev. Lett.
121, 054101 (2018).

[82] J. Casadiego, M. Nitzan, S. Hallerberg, and M. Timme,
Model-free inference of direct network interactions from
nonlinear collective dynamics, Nat. Commun. 8, 2192 (2017).

[83] H. Haehne, J. Casadiego, J. Peinke, and M. Timme,
Detecting hidden units and network size from perceptible
dynamics, Phys. Rev. Lett. 122, 158301 (2019).

[84] J. A. Kassel and H. Kantz, Statistical inference of one-
dimensional persistent nonlinear time series and applica-
tion to predictions, Phys. Rev. Res. 4, 013206 (2022).

[85] J. A. Kassel, B. Walter, and H. Kantz, Inferring nonlinear
fractional diffusion processes from single trajectories, New
J. Phys. 25, 113036 (2023).

[86] L. Parkavousi et al., Exploring stability in high-dimensional
complex systems: A data-driven approach (to be published).

[87] https://github.com/aminakhshi/hints
[88] R. Pawula, Approximation of the linear Boltzmann equation

by the Fokker-Planck equation, Phys. Rev. 162, 186
(1967).

[89] P. P. Lin, M. Wächter, M. R. R. Tabar, and J. Peinke,
Discontinuous jump behavior of the energy conversion in
wind energy systems, PRX Energy 2, 033009 (2023).

[90] F. Nikakhtar, M. Ayromlou, S. Baghram, S. Rahvar,
M. R. Rahimi Tabar, and R. K. Sheth, The excursion set
approach: Stratonovich approximation and Cholesky
decomposition, Mon. Not. R. Astron. Soc. 478, 5296
(2018).

[91] S. Baghram, F. Nikakhtar, M. R. R. Tabar, S. Rahvar, R. K.
Sheth, K. Lehnertz, and M. Sahimi, Exact enumeration
approach to first-passage time distribution of non-Markov
random walks, Phys. Rev. E 99, 062101 (2019).

[92] V. V. Vasconcelos, F. Raischel, M. Haase, J. Peinke, M.
Wächter, P. G. Lind, and D. Kleinhans, Principal axes for
stochastic dynamics, Phys. Rev. E 84, 031103 (2011).

[93] I. Shafarevich, A. Remizov, D. Kramer, and L. Nekludova,
Linear Algebra and Geometry (Springer, Berlin, Heidelberg,
2012).

[94] H. Stögbauer, A. Kraskov, S. A. Astakhov, and P.
Grassberger, Least-dependent-component analysis based
on mutual information, Phys. Rev. E 70, 066123 (2004).

[95] L. Michaelis and M. L. Menten, Die Kinetik der Invertin-
wirkung, Biochemische Zeitschrift 49, 333 (1913).

[96] S. H. Strogatz, Nonlinear Dynamics and Chaos: With
Applications to Physics, Biology, Chemistry, and Engineer-
ing, 2nd ed. (Westview Press, Boulder, CO, 2015).

M. REZA RAHIMI TABAR et al. PHYS. REV. X 14, 011050 (2024)

011050-36

https://doi.org/10.5194/npg-22-679-2015
https://doi.org/10.5194/npg-22-679-2015
https://doi.org/10.1103/PhysRevLett.106.154101
https://doi.org/10.1103/PhysRevLett.106.154101
https://doi.org/10.1103/PhysRevX.2.021005
https://doi.org/10.1103/PhysRevLett.109.024101
https://doi.org/10.1103/PhysRevLett.109.024101
https://doi.org/10.1103/PhysRevLett.121.054101
https://doi.org/10.1103/PhysRevLett.121.054101
https://doi.org/10.1038/s41467-017-02288-4
https://doi.org/10.1103/PhysRevLett.122.158301
https://doi.org/10.1103/PhysRevResearch.4.013206
https://doi.org/10.1088/1367-2630/ad091e
https://doi.org/10.1088/1367-2630/ad091e
https://github.com/aminakhshi/hints
https://github.com/aminakhshi/hints
https://doi.org/10.1103/PhysRev.162.186
https://doi.org/10.1103/PhysRev.162.186
https://doi.org/10.1103/PRXEnergy.2.033009
https://doi.org/10.1093/mnras/sty1415
https://doi.org/10.1093/mnras/sty1415
https://doi.org/10.1103/PhysRevE.99.062101
https://doi.org/10.1103/PhysRevE.84.031103
https://doi.org/10.1103/PhysRevE.70.066123
https://doi.org/10.1111/febs.12598

