Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Self-assembled inorganic chiral superstructures

Abstract

Controlled assembly of inorganic nanoparticles with different compositions, sizes and shapes into higher-order structures of collective functionalities is a central pursued objective in chemistry, physics, materials science and nanotechnology. The emerging chiral superstructures, which break spatial symmetries at the nanoscale, have attracted particular attention, owing to their unique chiroptical properties and potential applications in optics, catalysis, biology and so on. Various bottom-up strategies have been developed to build inorganic chiral superstructures based on the intrinsic configurational preference of the building blocks, external fields or chiral templates. Self-assembled inorganic chiral superstructures have demonstrated significant superior optical activity from the strong electric/magnetic coupling between the building blocks, as compared with the organic counterparts. In this Review, we discuss recent progress in preparing self-assembled inorganic chiral superstructures, with an emphasis on the driving forces that enable symmetry breaking during the assembly process. The chiroptical properties and applications are highlighted and a forward-looking trajectory of where research efforts should be focused is discussed.

Key points

  • The self-assembled inorganic chiral superstructures show similar motifs to their organic counterparts.

  • Chirality can be transmitted from individual chiral nanoparticles to their assemblies.

  • Chiral external fields can induce the chiral assembly of inorganic nanoparticles.

  • Chiral templates are an efficient route to fabricating inorganic chiral assemblies.

  • Inorganic chiral assemblies show distinct chiroptical properties, owing to the chiral arrangement of the individual nanoparticles.

  • A variety of applications are enabled by inorganic chiral assemblies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Typical molecular chiral structures and their inorganic assembly counterparts.
Fig. 2: Hierarchical chiral superstructures self-assembled from inorganic chiral nanomaterials.
Fig. 3: Self-assembled inorganic chiral superstructures under external fields and forces.
Fig. 4: Templates-enabled inorganic chiral superstructures.
Fig. 5: Chiroptical property of chiral superstructures.
Fig. 6: Chiral plasmonic nanomachines enabled by DNA origami template.
Fig. 7: Biosensing based on plasmonic chiral assemblies.
Fig. 8: Stem cell differentiation stimulated by circularly polarized light.
Fig. 9: CD spectra coding with chiral photonic crystals4.
Fig. 10: Self-assembled chiral superstructures for enantioselective catalysis17.

Similar content being viewed by others

References

  1. Tang, Z. Y., Kotov, N. A., Magonov, S. & Ozturk, B. Nanostructured artificial nacre. Nat. Mater. 2, 413–418 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Yeom, B. et al. Abiotic tooth enamel. Nature 543, 95–99 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Mao, L. B. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 354, 107–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Lv, J. W. et al. Biomimetic chiral photonic crystals. Angew. Chem. Int. Ed. 58, 7783–7787 (2019). An example of a biomimetic design of chiral inorganic superstructures with tailorable optical activity.

    Article  CAS  Google Scholar 

  5. Sharma, V., Crne, M., Park, J. O. & Srinivasarao, M. Structural origin of circularly polarized iridescence in jeweled beetles. Science 325, 449–451 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Xia, Y. S. et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotechnol. 6, 580–587 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Tang, Z. Y., Zhang, Z. L., Wang, Y., Glotzer, S. C. & Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Tang, Z. Y., Kotov, N. A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237–240 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, T., LaMontagne, D., Lynch, J., Zhuang, J. & Cao, Y. C. Colloidal superparticles from nanoparticle assembly. Chem. Soc. Rev. 42, 2804–2823 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Hentschel, M., Schaferling, M., Duan, X. Y., Giessen, H. & Liu, N. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhou, C., Duan, X. Y. & Liu, N. DNA-nanotechnology-enabled chiral plasmonics: from static to dynamic. Acc. Chem. Res. 50, 2906–2914 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Kong, X. T., Besteiro, L. V., Wang, Z. & Govorov, A. O. Plasmonic chirality and circular dichroism in bioassembled and nonbiological systems: theoretical background and recent progress. Adv. Mater. 32, 1801790 (2020).

    Article  CAS  Google Scholar 

  16. Hao, C. L., Xu, L. G., Kuang, H. & Xu, C. L. Artificial chiral probes and bioapplications. Adv. Mater. 32, 1802075 (2020).

    Article  CAS  Google Scholar 

  17. Li, S. et al. Single- and multi-component chiral supraparticles as modular enantioselective catalysts. Nat. Commun. 10, 4826 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ben-Moshe, A., Maoz, B., Govorov, A. O. & Markovich, G. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances. Chem. Soc. Rev. 42, 7028–7041 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, H. E. et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556, 360–365 (2018). An elegant method to synthesize Au nanoparticles with defined chiral morphologies.

    Article  CAS  PubMed  Google Scholar 

  20. González-Rubio, G. et al. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 368, 1472–1477 (2020).

    Article  PubMed  Google Scholar 

  21. Hananel, U., Ben-Moshe, A., Tal, D. & Markovich, G. Enantiomeric control of intrinsically chiral nanocrystals. Adv. Mater. 32, 1905594 (2020).

    Article  CAS  Google Scholar 

  22. Wang, P. P., Yu, S. J. & Ouyang, M. Assembled suprastructures of inorganic chiral nanocrystals and hierarchical chirality. J. Am. Chem. Soc. 139, 6070–6073 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, P.-p, Yu, S.-J., Govorov, A. O. & Ouyang, M. Cooperative expression of atomic chirality in inorganic nanostructures. Nat. Commun. 8, 14312 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jeong, K. J. et al. Helical magnetic field-induced real-time plasmonic chirality modulation. ACS Nano 14, 7152–7160 (2020). A demonstration of ultrafast modulation of the chiroptical property of the assembly by the magnetic field.

    Article  CAS  PubMed  Google Scholar 

  25. Yeom, J. et al. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 14, 66–72 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Tan, C. L. et al. Self-assembled chiral nanofibers from ultrathin low-dimensional nanomaterials. J. Am. Chem. Soc. 137, 1565–1571 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Walsh, T. R. & Knecht, M. R. Biointerface structural effects on the properties and applications of bioinspired peptide-based nanomaterials. Chem. Rev. 117, 12641–12704 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Hong, F., Zhang, F., Liu, Y. & Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Cecconello, A., Besteiro, L. V., Govorov, A. O. & Willner, I. Chiroplasmonic DNA-based nanostructures. Nat. Rev. Mater. 2, 17039 (2017).

    Article  CAS  Google Scholar 

  30. Liu, N. & Liedl, T. DNA-assembled advanced plasmonic architectures. Chem. Rev. 118, 3032–3053 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012). A pioneering work using DNA origami as the template for the construction of chiral plasmonic assemblies.

    Article  CAS  PubMed  Google Scholar 

  32. Lan, X. et al. Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc. 137, 457–462 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Schreiber, R. et al. Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat. Commun. 4, 2948 (2013).

    Article  PubMed  Google Scholar 

  34. Kuzyk, A. et al. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13, 862–866 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Kuzyk, A. et al. A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nat. Commun. 7, 10591 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuzyk, A., Urban, M. J., Idili, A., Ricci, F. & Liu, N. Selective control of reconfigurable chiral plasmonic metamolecules. Sci. Adv. 3, e1602803 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Qu, A. H. et al. Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. Nat. Biomed. Eng. 5, 103–113 (2021). A demonstration of the bioeffect of chiral assemblies derived from differential absorption of circularly polarized light.

    Article  CAS  PubMed  Google Scholar 

  38. Urban, M. J. et al. Chiral plasmonic nanostructures enabled by bottom-up approaches. Annu. Rev. Phys. Chem. 70, 275–299 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Kumar, J. & Liz-Marzán, L. M. Recent advances in chiral plasmonics — towards biomedical applications. Bull. Chem. Soc. Jpn. 92, 30–37 (2019).

    Article  CAS  Google Scholar 

  40. Mastroianni, A. J., Claridge, S. A. & Alivisatos, A. P. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 131, 8455–8459 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yan, W. J. et al. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. J. Am. Chem. Soc. 134, 15114–15121 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Zola, R. S. et al. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings. Adv. Mater. 31, 1806172 (2019).

    Article  Google Scholar 

  43. Yin, X. H., Schaferling, M., Metzger, B. & Giessen, H. Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model. Nano Lett. 13, 6238–6243 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Auguié, B., Alonso-Gómez, J. L., Guerrero-Martínez, A. S. & Liz-Marzán, L. M. Fingers crossed: optical activity of a chiral dimer of plasmonic nanorods. J. Phys. Chem. Lett. 2, 846–851 (2011).

    Article  PubMed  Google Scholar 

  45. Morrow, S. M., Bissette, A. J. & Fletcher, S. P. Transmission of chirality through space and across length scales. Nat. Nanotechnol. 12, 410–419 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 115, 7304–7397 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Bishop, K. J., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Park, C. et al. Homochiral supramolecular thin film from self-assembly of achiral triarylamine molecules by circularly polarized light. Molecules 25, 402 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  50. D’Urso, A., Randazzo, R., Lo Taro, L. & Purrello, R. Vortexes and nanoscale chirality. Angew. Chem. Int. Ed. 49, 108–112 (2010).

    Article  Google Scholar 

  51. Ribo, J. M., Crusats, J., Sagues, F., Claret, J. & Rubires, R. Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 292, 2063–2066 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Sun, J. S. et al. Control over the emerging chirality in supramolecular gels and solutions by chiral microvortices in milliseconds. Nat. Commun. 9, 2599 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Micali, N. et al. Selection of supramolecular chirality by application of rotational and magnetic forces. Nat. Chem. 4, 201–207 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Bailey, J. et al. Circular polarization in star-formation regions: implications for biomolecular homochirality. Science 281, 672–674 (1998).

    Article  PubMed  Google Scholar 

  55. Lee, H.-E., Ahn, H.-Y., Lee, J. & Nam, K. T. Biomolecule-enabled chiral assembly of plasmonic nanostructures. ChemNanoMat 3, 685–697 (2017).

    Article  CAS  Google Scholar 

  56. Wang, Y., Xu, J., Wang, Y. W. & Chen, H. Y. Emerging chirality in nanoscience. Chem. Soc. Rev. 42, 2930–2962 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Ben-Moshe, A., Govorov, A. O. & Markovich, G. Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals. Angew. Chem. Int. Ed. 52, 1275–1279 (2013).

    Article  CAS  Google Scholar 

  58. Ben-Moshe, A. et al. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat. Commun. 5, 4302 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Hananel, U., Ben-Moshe, A., Diamant, H. & Markovich, G. Spontaneous and directed symmetry breaking in the formation of chiral nanocrystals. Proc. Natl Acad. Sci. USA 116, 11159–11164 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu, Y. F. et al. Enantioseparation of Au20(PP3)4Cl4 clusters with intrinsically chiral cores. Angew. Chem. Int. Ed. 57, 9059–9063 (2018).

    Article  CAS  Google Scholar 

  61. Gao, X. Q., Han, B., Yang, X. K. & Tang, Z. Y. Perspective of chiral colloidal semiconductor nanocrystals: opportunity and challenge. J. Am. Chem. Soc. 141, 13700–13707 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Gao, X. et al. Distinct excitonic circular dichroism between wurtzite and zincblende CdSe nanoplatelets. Nano Lett. 18, 6665–6671 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Gao, X. Q. et al. Excitonic circular dichroism of chiral quantum rods. J. Am. Chem. Soc. 139, 8734–8739 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Li, Y. Y. et al. Chirality of glutathione surface coating affects the cytotoxicity of quantum dots. Angew. Chem. Int. Ed. 50, 5860–5864 (2011).

    Article  CAS  Google Scholar 

  65. Zhou, Y. L., Yang, M., Sun, K., Tang, Z. Y. & Kotov, N. A. Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals. J. Am. Chem. Soc. 132, 6006–6013 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Ahn, H. Y. et al. Bioinspired toolkit based on intermolecular encoder toward evolutionary 4D chiral plasmonic materials. Acc. Chem. Res. 52, 2768–2783 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Kim, H. et al. γ-Glutamylcysteine- and cysteinylglycine-directed growth of chiral gold nanoparticles and their crystallographic analysis. Angew. Chem. Int. Ed. 59, 12976–12983 (2020).

    Article  CAS  Google Scholar 

  68. Che, S. et al. Synthesis and characterization of chiral mesoporous silica. Nature 429, 281–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Mark, A. G., Gibbs, J. G., Lee, T. C. & Fischer, P. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12, 802–807 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. McPeak, K. M. et al. Complex chiral colloids and surfaces via high-index off-cut silicon. Nano Lett. 14, 2934–2940 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Okazaki, Y. et al. Chiral colloids: homogeneous suspension of individualized SiO2 helical and twisted nanoribbons. ACS Nano 8, 6863–6872 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Lu, C. & Tang, Z. Advanced inorganic nanoarchitectures from oriented self-assembly. Adv. Mater. 28, 1096–1108 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Zhou, Y. et al. Biomimetic hierarchical assembly of helical supraparticles from chiral nanoparticles. ACS Nano 10, 3248–3256 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Yan, J. et al. Self-assembly of chiral nanoparticles into semiconductor helices with tunable near-infrared optical activity. Chem. Mater. 32, 476–488 (2019).

    Article  Google Scholar 

  75. Feng, W. et al. Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors. Sci. Adv. 3, e1601159 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ye, X. C. et al. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc. Natl Acad. Sci. USA 107, 22430–22435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gong, J. X. et al. Shape-dependent ordering of gold nanocrystals into large-scale superlattices. Nat. Commun. 8, 14038 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nystrom, G., Arcari, M. & Mezzenga, R. Confinement-induced liquid crystalline transitions in amyloid fibril cholesteric tactoids. Nat. Nanotechnol. 13, 330–336 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Tran, A., Boott, C. E. & MacLachlan, M. J. Understanding the self-assembly of cellulose nanocrystals-toward chiral photonic materials. Adv. Mater. 32, 1905876 (2020).

    Article  CAS  Google Scholar 

  80. Siavashpouri, M. et al. Molecular engineering of chiral colloidal liquid crystals using DNA origami. Nat. Mater. 16, 849–858 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Jiang, W. et al. Emergence of complexity in hierarchically organized chiral particles. Science 368, 642–648 (2020). An example elucidating the relationship between the chirality of building blocks and the structural diversity of the assemblies.

    Article  CAS  PubMed  Google Scholar 

  82. Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photonics 5, 343–348 (2011).

    Article  CAS  Google Scholar 

  83. Chrysostomou, A., Lucas, P. W. & Hough, J. H. Circular polarimetry reveals helical magnetic fields in the young stellar object HH 135–136. Nature 450, 71–73 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Hermans, T. M., Bishop, K. J. M., Stewart, P. S., Davis, S. H. & Grzybowski, B. A. Vortex flows impart chirality-specific lift forces. Nat. Commun. 6, 5640 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Noorduin, W. L. et al. Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light. Nat. Chem. 1, 729–732 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Feringa, B. L. & van Delden, R. A. Absolute asymmetric synthesis: the origin, control, and amplification of chirality. Angew. Chem. Int. Ed. 38, 3419–3438 (1999).

    Article  CAS  Google Scholar 

  87. Huck, N. P. M., Jager, W. F., deLange, B. & Feringa, B. L. Dynamic control and amplification of molecular chirality by circular polarized light. Science 273, 1686–1688 (1996).

    Article  CAS  Google Scholar 

  88. Kim, J. et al. Induction and control of supramolecular chirality by light in self-assembled helical nanostructures. Nat. Commun. 6, 6959 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Iftime, G., Labarthet, F. L., Natansohn, A. & Rochon, P. Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light. J. Am. Chem. Soc. 122, 12646–12650 (2000).

    Article  CAS  Google Scholar 

  90. Xu, S. Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Kim, J. Y. et al. Assembly of gold nanoparticles into chiral superstructures driven by circularly polarized light. J. Am. Chem. Soc. 141, 11739–11744 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim, H. et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat. Photonics 3, 534–540 (2009).

    Article  CAS  Google Scholar 

  93. Zerrouki, D., Baudry, J., Pine, D., Chaikin, P. & Bibette, J. Chiral colloidal clusters. Nature 455, 380–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Singh, G. et al. Self-assembly of magnetite nanocubes into helical superstructures. Science 345, 1149–1153 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Hu, S., Liu, H. L., Wang, P. P. & Wang, X. Inorganic nanostructures with sizes down to 1 nm: a macromolecule analogue. J. Am. Chem. Soc. 135, 11115–11124 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Kim, Y. et al. Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale. Nat. Mater. 15, 461–469 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Lv, J. W. et al. Gold nanowire chiral ultrathin films with ultrastrong and broadband optical activity. Angew. Chem. Int. Ed. 56, 5055–5060 (2017).

    Article  CAS  Google Scholar 

  98. Guerrero-Martinez, A. et al. Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas. Angew. Chem. Int. Ed. 50, 5499–5503 (2011).

    Article  CAS  Google Scholar 

  99. Jung, S. H., Jeon, J., Kim, H., Jaworski, J. & Jung, J. H. Chiral arrangement of achiral Au nanoparticles by supramolecular assembly of helical nanofiber templates. J. Am. Chem. Soc. 136, 6446–6452 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Nakagawa, M. & Kawai, T. Chirality-controlled syntheses of double-helical Au nanowires. J. Am. Chem. Soc. 140, 4991–4994 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Zhou, Y., Ji, Q. M., Masuda, M., Kamiya, S. & Shimizu, T. Helical arrays of CdS nanoparticles tracing on a functionalized chiral template of glycolipid nanotubes. Chem. Mater. 18, 403–406 (2006).

    Article  CAS  Google Scholar 

  102. Kelly, J. A., Giese, M., Shopsowitz, K. E., Hamad, W. Y. & MacLachlan, M. J. The development of chiral nematic mesoporous materials. Acc. Chem. Res. 47, 1088–1096 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, P.-X., Hamad, W. Y. & MacLachlan, M. J. Structure and transformation of tactoids in cellulose nanocrystal suspensions. Nat. Commun. 7, 11515 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Querejeta-Fernández, A., Chauve, G., Methot, M., Bouchard, J. & Kumacheva, E. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J. Am. Chem. Soc. 136, 4788–4793 (2014).

    Article  PubMed  Google Scholar 

  105. Chu, G. et al. Optically tunable chiral plasmonic guest–host cellulose films weaved with long-range ordered silver nanowires. ACS Appl. Mater. Interfaces 7, 11863–11870 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Lukach, A. et al. Coassembly of gold nanoparticles and cellulose nanocrystals in composite films. Langmuir 31, 5033–5041 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Shopsowitz, K. E., Qi, H., Hamad, W. Y. & MacLachlan, M. J. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468, 422–425 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Shopsowitz, K. E., Hamad, W. Y. & MacLachlan, M. J. Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. Angew. Chem. Int. Ed. 50, 10991–10995 (2011).

    Article  CAS  Google Scholar 

  109. Shopsowitz, K. E., Stahl, A., Hamad, W. Y. & MacLachlan, M. J. Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering. Angew. Chem. Int. Ed. 51, 6886–6890 (2012).

    Article  CAS  Google Scholar 

  110. Qi, H., Shopsowitz, K. E., Hamad, W. Y. & MacLachlan, M. J. Chiral nematic assemblies of silver nanoparticles in mesoporous silica thin films. J. Am. Chem. Soc. 133, 3728–3731 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Schlesinger, M., Giese, M., Blusch, L. K., Hamad, W. Y. & MacLachlan, M. J. Chiral nematic cellulose–gold nanoparticle composites from mesoporous photonic cellulose. Chem. Commun. 51, 530–533 (2015).

    Article  CAS  Google Scholar 

  112. Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    Article  CAS  Google Scholar 

  113. Sarikaya, M., Tamerler, C., Jen, A. K. Y., Schulten, K. & Baneyx, F. Molecular biomimetics: nanotechnology through biology. Nat. Mater. 2, 577–585 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Mokashi-Punekar, S., Zhou, Y. C., Brooks, S. C. & Rosi, N. L. Construction of chiral, helical nanoparticle superstructures: progress and prospects. Adv. Mater. 32, 1905975 (2020).

    Article  CAS  Google Scholar 

  115. Chen, C. L., Zhang, P. J. & Rosi, N. L. A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices. J. Am. Chem. Soc. 130, 13555–13557 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mokashi-Punekar, S., Merg, A. D. & Rosi, N. L. Systematic adjustment of pitch and particle dimensions within a family of chiral plasmonic gold nanoparticle single helices. J. Am. Chem. Soc. 139, 15043–15048 (2017).

    Article  CAS  PubMed  Google Scholar 

  117. Chen, C.-L. & Rosi, N. L. Preparation of unique 1-D nanoparticle superstructures and tailoring their structural features. J. Am. Chem. Soc. 132, 6902–6903 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Song, C. Y. et al. Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures. Nano Lett. 13, 3256–3261 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Merg, A. D. et al. Peptide-directed assembly of single-helical gold nanoparticle superstructures exhibiting intense chiroptical activity. J. Am. Chem. Soc. 138, 13655–13663 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  PubMed  Google Scholar 

  121. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Li, S. et al. Hybrid nanoparticle pyramids for intracellular dual microRNAs biosensing and bioimaging. Adv. Mater. 29, 1606086 (2017).

    Article  Google Scholar 

  123. Ma, W. et al. Chiral plasmonics of self-assembled nanorod dimers. Sci. Rep. 3, 1934 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ma, W. et al. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 4, 2689 (2013). An example demonstrating the ultrasensitive detection of biomolecules with chiral plasmonic assemblies.

    Article  PubMed  Google Scholar 

  125. Wu, X. L. et al. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J. Am. Chem. Soc. 135, 18629–18636 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Hartl, C. et al. Position accuracy of gold nanoparticles on DNA origami structures studied with small-angle X-ray scattering. Nano Lett. 18, 2609–2615 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shen, X. B. et al. Three-dimensional plasmonic chiral tetramers assembled by DNA origami. Nano Lett. 13, 2128–2133 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Tian, Y. et al. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat. Nanotechnol. 10, 637–644 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Urban, M. J. et al. Plasmonic toroidal metamolecules assembled by DNA origami. J. Am. Chem. Soc. 138, 5495–5498 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Shen, X. B. et al. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc. 134, 146–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Shen, C. Q. et al. Spiral patterning of Au nanoparticles on Au nanorod surface to form chiral AuNR@AuNP helical superstructures templated by DNA origami. Adv. Mater. 29, 1606533 (2017).

    Article  Google Scholar 

  133. Lan, X. et al. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. J. Am. Chem. Soc. 135, 11441–11444 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Shen, X. et al. 3D plasmonic chiral colloids. Nanoscale 6, 2077–2081 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Lan, X. et al. Programmable supra-assembly of a DNA surface adapter for tunable chiral directional self-assembly of gold nanorods. Angew. Chem. Int. Ed. 56, 14632–14636 (2017).

    Article  CAS  Google Scholar 

  136. Urban, M. J., Zhou, C., Duan, X. Y. & Liu, N. Optically resolving the dynamic walking of a plasmonic walker couple. Nano Lett. 15, 8392–8396 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Zhou, C., Duan, X. Y. & Liu, N. A plasmonic nanorod that walks on DNA origami. Nat. Commun. 6, 8102 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Duan, X. Y., Kamin, S., Sterl, F., Giessen, H. & Liu, N. Hydrogen-regulated chiral nanoplasmonics. Nano Lett. 16, 1462–1466 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Zhou, C., Xin, L., Duan, X., Urban, M. J. & Liu, N. Dynamic plasmonic system that responds to thermal and aptamer-target regulations. Nano Lett. 18, 7395–7399 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Xin, L., Zhou, C., Duan, X. & Liu, N. A rotary plasmonic nanoclock. Nat. Commun. 10, 5394 (2019). An example of a nanomachine based on chiral assembly.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Neubrech, F., Hentschel, M. & Liu, N. Reconfigurable plasmonic chirality: fundamentals and applications. Adv. Mater. 32, 1905640 (2020).

    Article  CAS  Google Scholar 

  142. Funck, T., Nicoli, F., Kuzyk, A. & Liedl, T. Sensing picomolar concentrations of RNA using switchable plasmonic chirality. Angew. Chem. Int. Ed. 57, 13495–13498 (2018).

    Article  CAS  Google Scholar 

  143. Kumar, J. et al. Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc. Natl Acad. Sci. USA 115, 3225–3230 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lu, J. et al. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science 371, 1368–1374 (2021).

    Article  CAS  PubMed  Google Scholar 

  145. Fan, J. C. & Kotov, N. A. Chiral nanoceramics. Adv. Mater. 32, 1906738 (2020).

    Article  CAS  Google Scholar 

  146. Liu, P. et al. Optically active perovskite CsPbBr3 nanocrystals helically arranged on inorganic silica nanohelices. Nano Lett. 20, 8453–8460 (2020).

    Article  CAS  PubMed  Google Scholar 

  147. Myroshnychenko, V. et al. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792–1805 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Fan, Z. & Govorov, A. O. Plasmonic circular dichroism of chiral metal nanoparticle assemblies. Nano Lett. 10, 2580–2587 (2010). A theoretical description of the chiroptical properties of chiral plasmonic assemblies.

    Article  CAS  PubMed  Google Scholar 

  149. Nguyen, L. et al. Chiral assembly of gold–silver core–shell plasmonic nanorods on DNA origami with strong optical activity. ACS Nano 14, 7454–7461 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhang, Q. F. et al. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science 365, 1475–1478 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Martens, K. et al. Long- and short-ranged chiral interactions in DNA-assembled plasmonic chains. Nat. Commun. 12, 2025 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hu, L., Liedl, T., Martens, K., Wang, Z. M. & Govorov, A. O. Long-range plasmon-assisted chiral interactions in nanocrystal assemblies. ACS Photonics 6, 749–756 (2019).

    Article  CAS  Google Scholar 

  153. Govorov, A. O., Fan, Z. Y., Hernandez, P., Slocik, J. M. & Naik, R. R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 10, 1374–1382 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Han, B., Zhu, Z. N., Li, Z. T., Zhang, W. & Tang, Z. Y. Conformation modulated optical activity enhancement in chiral cysteine and Au nanorod assemblies. J. Am. Chem. Soc. 136, 16104–16107 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Tao, J. et al. Endowing zeolite LTA superballs with multifold light manipulation ability. Angew. Chem. Int. Ed. 59, 19684–19690 (2020).

    Article  CAS  Google Scholar 

  156. Hou, K. et al. Optically active inverse opal photonic crystals. J. Am. Chem. Soc. 140, 16446–16449 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Mulder, D. J., Schenning, A. P. H. J. & Bastiaansen, C. W. M. Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors. J. Mater. Chem. C 2, 6695–6705 (2014).

    Article  CAS  Google Scholar 

  158. Chandrasekhar, S. & Prasad, J. S. Theory of rotatory dispersion of cholesteric liquid crystals. Mol. Cryst. Liq. Cryst. 14, 115–128 (1971).

    Article  CAS  Google Scholar 

  159. Vignolini, S. et al. Pointillist structural color in Pollia fruit. Proc. Natl Acad. Sci. USA 109, 15712–15715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dabrowski, R., Kula, P. & Herman, J. High birefringence liquid crystals. Crystals 3, 443–482 (2013).

    Article  CAS  Google Scholar 

  161. Muskens, O. L., Borgstrom, M. T., Bakkers, E. P. A. M. & Rivas, J. G. Giant optical birefringence in ensembles of semiconductor nanowires. Appl. Phys. Lett. 89, 233117 (2006).

    Article  Google Scholar 

  162. Thiel, M., Rill, M. S., von Freymann, G. & Wegener, M. Three-dimensional bi-chiral photonic crystals. Adv. Mater. 21, 4680–4682 (2009).

    Article  CAS  Google Scholar 

  163. Kumar, J., Nakashima, T. & Kawai, T. Circularly polarized luminescence in chiral molecules and supramolecular assemblies. J. Phys. Chem. Lett. 6, 3445–3452 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. Sang, Y. T., Han, J. L., Zhao, T. H., Duan, P. F. & Liu, M. H. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application. Adv. Mater. 32, 1900110 (2020).

    Article  CAS  Google Scholar 

  165. Wu, H., He, X., Yang, B., Li, C. C. & Zhao, L. Assembly-induced strong circularly polarized luminescence of spirocyclic chiral silver(I) clusters. Angew. Chem. Int. Ed. 60, 1535–1539 (2020).

    Article  Google Scholar 

  166. Shi, L. et al. Self-assembly of chiral gold clusters into crystalline nanocubes of exceptional optical activity. Angew. Chem. Int. Ed. 56, 15397–15401 (2017).

    Article  CAS  Google Scholar 

  167. Mei, J., Leung, N. L. C., Kwok, R. T. K., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015).

    Article  CAS  PubMed  Google Scholar 

  168. Hao, C. et al. Tailoring chiroptical activity of iron disulfide quantum dot hydrogels with circularly polarized light. Adv. Mater. 31, 1903200 (2019).

    Article  Google Scholar 

  169. Huo, S. W., Duan, P. F., Jiao, T. F., Peng, Q. M. & Liu, M. H. Self-assembled luminescent quantum dots to generate full-color and white circularly polarized light. Angew. Chem. Int. Ed. 56, 12174–12178 (2017). An assembly method to endow luminescent nanoparticles with circularly polarized luminescence.

    Article  CAS  Google Scholar 

  170. Jin, X. et al. Optically active upconverting nanoparticles with induced circularly polarized luminescence and enantioselectively triggered photopolymerization. ACS Nano 13, 2804–2811 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Shi, Y., Duan, P., Huo, S., Li, Y. & Liu, M. Endowing perovskite nanocrystals with circularly polarized luminescence. Adv. Mater. 30, 1705011 (2018).

    Article  Google Scholar 

  172. Gao, F. L. et al. A singlet oxygen generating agent by chirality-dependent plasmonic shell-satellite nanoassembly. Adv. Mater. 29, 1606864 (2017).

    Article  Google Scholar 

  173. Li, F. et al. Chiral carbon dots mimicking topoisomerase I to mediate the topological rearrangement of supercoiled DNA enantioselectively. Angew. Chem. Int. Ed. 59, 11087–11092 (2020).

    Article  CAS  Google Scholar 

  174. Hao, C. L. et al. Chiral semiconductor nanoparticles for protein catalysis and profiling. Angew. Chem. Int. Ed. 58, 7371–7374 (2019).

    Article  CAS  Google Scholar 

  175. Sun, M. Z. et al. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat. Chem. 10, 821–830 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Jiang, S. et al. Chiral ceramic nanoparticles and peptide catalysis. J. Am. Chem. Soc. 139, 13701–13712 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Zhang, H. et al. Engineering of chiral nanomaterials for biomimetic catalysis. Chem. Sci. 11, 12937–12954 (2021).

    Article  Google Scholar 

  178. Boyer, P. D. The ATP synthase — a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).

    Article  CAS  PubMed  Google Scholar 

  179. Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).

    Article  CAS  Google Scholar 

  180. Bath, J. & Turberfield, A. J. DNA nanomachines. Nat. Nanotechnol. 2, 275–284 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Liu, X. Q., Lu, C. H. & Willner, I. Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines. Acc. Chem. Res. 47, 1673–1680 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  CAS  PubMed  Google Scholar 

  183. Li, S. P. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Li, Z. T. et al. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 134, 3322–3325 (2012).

    Article  CAS  PubMed  Google Scholar 

  186. Chen, W. et al. Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett. 9, 2153–2159 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Zhao, Y. et al. Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection. Nano Lett. 14, 3908–3913 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Tang, L. J. et al. Chirality-based Au@Ag nanorod dimers sensor for ultrasensitive PSA detection. ACS Appl. Mater. Interfaces 7, 12708–12712 (2015).

    Article  CAS  PubMed  Google Scholar 

  189. Li, S. et al. Dual-mode ultrasensitive quantification of microRNA in living cells by chiroplasmonic nanopyramids self-assembled from gold and upconversion nanoparticles. J. Am. Chem. Soc. 138, 306–312 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Wu, X. et al. Propeller-like nanorod-upconversion nanoparticle assemblies with intense chiroptical activity and luminescence enhancement in aqueous phase. Adv. Mater. 28, 5907–5915 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Sun, M. et al. Intracellular localization of nanoparticle dimers by chirality reversal. Nat. Commun. 8, 1847 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Zhao, X. et al. Tuning the interactions between chiral plasmonic films and living cells. Nat. Commun. 8, 2007 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Zhang, H. Y. et al. Light-induced chiral iron copper selenide nanoparticles prevent β-amyloidopathy in vivo. Angew. Chem. Int. Ed. 59, 7131–7138 (2020).

    Article  CAS  Google Scholar 

  194. Hou, K. et al. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat. Commun. 11, 4790 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yeom, J. et al. Chiral supraparticles for controllable nanomedicine. Adv. Mater. 32, 1903878 (2020).

    Article  CAS  Google Scholar 

  196. Hao, C. et al. Chiral molecule-mediated porous CuXO nanoparticle clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 141, 1091–1099 (2019).

    Article  CAS  PubMed  Google Scholar 

  197. Hao, C. et al. Unusual circularly polarized photocatalytic activity in nanogapped gold–silver chiroplasmonic nanostructures. Adv. Funct. Mater. 25, 5816–5822 (2015).

    Article  CAS  Google Scholar 

  198. Liu, T. et al. Chiral plasmonic nanocrystals for generation of hot electrons: toward polarization-sensitive photochemistry. Nano Lett. 19, 1395–1407 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. Khorashad, L. K. et al. Hot electrons generated in chiral plasmonic nanocrystals as a mechanism for surface photochemistry and chiral growth. J. Am. Chem. Soc. 142, 4193–4205 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Zhao, Y. et al. Nanoscopic control and quantification of enantioselective optical forces. Nat. Nanotechnol. 12, 1055–1059 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Shikha, S., Salafi, T., Cheng, J. T. & Zhang, Y. Versatile design and synthesis of nano-barcodes. Chem. Soc. Rev. 46, 7054–7093 (2017).

    Article  CAS  PubMed  Google Scholar 

  202. Noyori, R. Asymmetric catalysis: Science and opportunities (Nobel lecture). Angew. Chem. Int. Ed. 41, 2008–2022 (2002).

    Article  CAS  Google Scholar 

  203. Zhou, K. B. & Li, Y. D. Catalysis based on nanocrystals with well-defined facets. Angew. Chem. Int. Ed. 51, 602–613 (2012).

    Article  CAS  Google Scholar 

  204. Pendry, J. B. A chiral route to negative refraction. Science 306, 1353–1355 (2004).

    Article  CAS  PubMed  Google Scholar 

  205. Collins, J. T. et al. Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends. Adv. Opt. Mater. 5, 1700182 (2017).

    Article  Google Scholar 

  206. Bloom, B. P. et al. Directing charge transfer in quantum dot assemblies. Acc. Chem. Res. 51, 2565–2573 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072–1074 (2017).

    Article  CAS  PubMed  Google Scholar 

  208. Zhuang, T. T. et al. Regioselective magnetization in semiconducting nanorods. Nat. Nanotechnol. 15, 192–197 (2020).

    Article  CAS  PubMed  Google Scholar 

  209. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    Article  CAS  PubMed  Google Scholar 

  210. Coles, H. & Morris, S. Liquid-crystal lasers. Nat. Photonics 4, 676–685 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000 to Z.T.), National Key Basic Research Program of China (2016YFA0200700 to Z.T.), National Natural Science Foundation of China (92056204 and 21721002 to Z.T.; 21805188 to X.G.) and Frontier Science Key Project of Chinese Academy of Sciences (QYZDJ-SSW-SLH038 to Z.T.).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and Z.T. wrote and revised the manuscript. X.G., B.H., Y.Z. and K.H. gave important advice.

Corresponding author

Correspondence to Zhiyong Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks W. Cheng and T. Liedl for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Langmuir–Blodgett assembly

A method to fabricate an ordered single-layer or multilayer structure of molecules or nanomaterials in which the materials are spread on the surface of a liquid in the Langmuir trough and then surface compressing is applied by the mobile bars. Ordered single-layer or multilayer structures can be obtained by transferring the assembly onto a solid substrate.

Chirality transmission

A phenomenon by which chiral information is transmitted between different length scales.

Chirality amplification

A phenomenon by which local chirality of a system decides the chiral sense of the entire system.

Circularly polarized light

(CPL). An electromagnetic wave in which the electromagnetic field of the wave has a constant magnitude at each point and is rotating at a constant rate in a plane perpendicular to the direction of the wave.

Vortices

A form of fluid flow in which the flow revolves around an axis line.

Antisolvent

A solvent in which the compound is less soluble.

Enantiopure

A chiral object (molecule, nanoparticle, etc.) that is in one specific enantiomeric form.

Bar magnets

Rectangular pieces of an object made up of materials with permanent magnetic properties.

Langmuir–Schaefer deposition

A method to deposit Langmuir films onto a solid substrate, whereby the substrate is placed horizontally relative to the Langmuir film and the film is transferred by a lift-off manner.

Chiral dopants

Chiral molecules that can induce a molecular rearrangement and a helical twisting of the host achiral molecules.

Nematic

A phase of a liquid crystal with the molecules oriented in parallel lines but not layers.

Birefringence

An optical property of a material having a refractive index that depends on the polarization and propagation direction of light.

Mesogens

A compound that displays liquid crystal properties.

Form birefringence

Birefringence that emerges when structure elements such as rods of one refractive index are suspended in a medium with a different refractive index.

Toehold-mediated strand displacement reaction

An enzyme-free molecular tool to exchange one strand of DNA or RNA (output) with another strand (input).

Polymerase chain reaction

A method used to rapidly amplify the copy number (millions to billions of complete or partial copies) of a specific DNA sample, which can then be studied in detail.

Neural stem cells

Multipotent cells that firstly generate the radial glial progenitor cells that generate the neurons and glia of the nervous system of all animals during embryonic development.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Gao, X., Han, B. et al. Self-assembled inorganic chiral superstructures. Nat Rev Chem 6, 125–145 (2022). https://doi.org/10.1038/s41570-021-00350-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00350-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing