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We consider Majorana lattices with two-site interactions consisting of a general function of the
fermion bilinear. The models are exactly solvable in the limit of a large number of on-site fermions. The
four-site chain exhibits a quantum phase transition controlled by the hopping parameters and manifests
itself in a discontinuous entanglement entropy, obtained by constraining the one-sided modular
Hamiltonian. Inspired by recent work within the AdS/CFT correspondence, we identify transitions
between types of von Neumann operator algebras throughout the phase diagram. We find transitions of
the form II1 ↔ III ↔ I∞ that reduce to II1 ↔ I∞ in the strongly interacting limit, where they connect
nonfactorized and factorized ground states. Our results provide novel realizations of such transitions in a
controlled many-body model.
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Introduction.—Entanglement in many-body systems and
quantum field theories (QFTs) has recently been explored
via a novel take on local operator algebras and axiomatic
QFT [1–6] (see [7,8] for a review). A fruitful platform for
these analyses is the anti–de Sitter/conformal field theory
correspondence [9–11] (also known as holography), which
relates strongly coupled QFTs in d dimensions with gravity
theories on negatively curved spacetimes in dþ 1 dimen-
sions. In this context, operator algebras, and especially von
Neumann algebras, have recently been leveraged to rigor-
ously describe the entanglement structure of holographic
systems [12–20]. A direct consequence of these investiga-
tions is the algebra typification of the two phases in the
Hawking-Page transition [12,13], characterized by factor-
ized and nonfactorized Hilbert spaces, respectively. In
addition to these new developments, the study of algebraic
properties emerging in quantum systems in the limit of
infinitely many degrees of freedom, which enables phe-
nomena such phase transitions and facilitates the study of
entanglement, is a long-standing line of investigation [21].
This state of the art motivates us to study transitions of

operator algebras arising in interacting many-body quan-
tum systems whose Hilbert space structure allows for a
controlled analysis of entanglement. A useful object which
helps in classifying types of algebras is the one-sided
modular Hamiltonian associated to a given subregion [6].
For free fermionic systems, this object is uniquely

determined by the two-point correlation functions restricted
to the subregion [22]. We extend these results to interacting
fermionic systems by constraining the form of the one-
sided modular Hamiltonian in the limit of a large number of
on-site fermions. For a wide class of interacting Majorana
lattices, we exploit this extension to identify the operator
algebras underlying our models, together with their tran-
sitions between different regimes of the phase diagram.
This paves the way for addressing the classification of
algebras, and possible transitions thereof, in previously
suggested models for discrete holography, such as OðNÞ-
invariant aperiodic spin chains [23].
More precisely, in this Letter, we introduce a lattice

model with N Majorana fermions on each site, interacting
via a general potential involving multibody hoppings. In
the large-N limit, all higher-point functions factorize. Thus,
we solve the system exactly by obtaining the two-point
correlation function for generic interaction potentials. We
showcase the wide applicability of our techniques by
considering instances of the model including both finite
and infinite chains with nearest-neighbor hopping.
We report three main results: First, we derive the entropy

of a two-site chain with generic interaction potential. This
entropy is fully determined by the correlations between the
two sites, which are dictated by the interaction potential via
self-consistency. This result can be interpreted both as the
thermal entropy of the chain at a finite temperature or as the
entanglement entropy of a two-site subregion in a larger
chain. Remarkably, we find that the entropy itself does not
depend explicitly on the chosen potential. Second, for a
four-site chain, we identify two phases of the system
characterized by strong and weak correlations within any
two-site subsystem of the chain relative to all other
correlations in the system. In particular, we identify a
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regime where the correlation structure indicates the fac-
torization of the ground state. For a vast class of potentials,
we show that these phases are connected by a quantum
phase transition. Moreover, we determine the entanglement
entropy of the half-chain by imposing a constraint on the
one-sided modular Hamiltonian. In correspondence with
the phase transition, the entanglement entropy exhibits a
discontinuity above a critical value of the interaction
strength. Third, exploiting the exact solvability of our
model, we identify transitions between the local operator
algebras underlying the four-site chain. When the correla-
tions within a given subregion are the most relevant in the
system, we find a von Neumann algebra of type I∞, which,
in general, encodes finite entanglement. In our model,
entanglement vanishes, thus signaling factorization. In the
opposite regime, the algebra is of type II1, associated with
infinite entanglement entropy, while still allowing for the
definition of a trace functional. The intermediate domain is
described by type III algebras, where the entanglement is
infinite and a trace functional cannot be defined. Strikingly,
in the strongly interacting limit and for an exponential
potential in the fermion bilinear, we find that the transition
between types II1 and I∞ algebras occurs in correspondence
with the identified quantum phase transition. This transition
then connects a nonfactorized ground state to a ground state
factorized into a product state.
Hamiltonian and Schwinger-Dyson equations.—We

consider a lattice of L sites with N Majorana fermions ψ j
x

at each site, with anticommutation relations fψ j
x;ψk

yg ¼
δjkδxy. The microscopic Hamiltonian is given by

H ¼ N
2

XL
x;y¼1

hxy

�
2

iN

XN
j¼1

ψ j
xψ

j
y

�
; ð1Þ

with a general interaction potential hxy, which, without
loss of generality, obeys hxyðξÞ ¼ hyxð−ξÞ and hxxðξÞ ¼ 0.
The theory is invariant under a global OðNÞ rotation
ψ j
x →

P
k O

jkψk
x, where O is an orthogonal matrix. It is a

lattice counterpart of the Gross-Neveu model [24] with a
general interaction potential, and only the bubble diagrams
contribute to two-point functions at leading order in 1=N;
see Supplemental Material [25]. When hxyðξÞ ∝ ξq, the
model is equivalent to the replicated Brownian Sachdev-
Ye-Kitaev (SYKq) model in disorder averaging [26]. In this
work, hxyðξÞ always includes a linear term in ξ.
We solve the model (1) by introducing the effective

action of two auxiliary bilocal fields, the Green’s function
Gxyðτ1; τ2Þ ¼ 1=N

P
j ψ

j
xðτ1Þψ j

yðτ2Þ and the self-energy
Σxyðτ1; τ2Þ, introduced as a Lagrange multiplier, in the
spirit of [27–29]. Here, τ denotes Euclidean time. We
consider the canonical ensemble at temperature 1=β and
write the thermal partition function Z ¼ R

DG̃DΣ̃e−SE½G̃;Σ̃�
with the effective action

−SE=N ¼ log PFð∂τδxy − ΣxyÞ

−
1

2

X
x;y

Z
β

0

dτ1dτ2Gxyðτ1 − τ2ÞΣxyðτ1 − τ2Þ

−
1

2

X
x;y

Z
β

0

dτhxyð−2iGxyð0ÞÞ; ð2Þ

where GxyðτÞ ¼ −Gyxð−τÞ and we have assumed time-
translational invariance. From Z, we may derive the
properties of the ground state (when β → ∞) or the
thermodynamics of the system at finite temperature.
In the large-N limit, which we take first in all following
computations, the saddle point approximation of the path
integral leads to the Schwinger-Dyson (SD) equations

G0
xyðτ12Þ −

X
z

Z
dτ3Σxzðτ13ÞGzyðτ32Þ ¼ δxyδðτ12Þ; ð3Þ

Σxyðτ12Þ ¼ 2ih0xyð−2iGxyð0ÞÞδðτ12Þ; ð4Þ
with τij ≡ τi − τj and Σxy ¼ −Σyx due to the conditions on
hxy mentioned above. This model is exactly solvable in the
large-N limit, in the sense that all higher-point functions
factorize into products of two-point functions; i.e., we have
large-N factorization.
We solve Eqs. (3) and (4) for general τ by leveraging the

fact that the self-energy is solely determined by −2iGxyð0Þ.
We can, thus, solve for Gð0Þ by means of self-consistency
(SC) conditions. Using the form of (3) in Fourier space,
SC imposes

Gxyð0Þ ¼
1

β

X
n

½½−iωn − ΣðωnÞ�−1�xy; ð5Þ

with ωn ¼ 2πðnþ 1=2Þ=β and Σ given by (4). The Green’s
function GðτÞ is then obtained by inserting Gð0Þ back
into (4) and (3).
Two-site chain.—To provide an explicit application of

our general techniques, we now focus on a system governed
by a general HamiltonianH of the form (1) with L ¼ 2 sites
and at a finite temperature 1=β. Without loss of generality,
we can absorb β into the general form of the Hamiltonian
(1), i.e., set β ¼ 1. Thus, the density matrix reads

ρ ¼ e−H

Z
; H ¼ Nh

�
2

iN

X
j

ψ j
1ψ

j
2

�
; ð6Þ

where Z ¼ Trðe−HÞ and hðξÞ≡ h12ðξÞ ¼ h21ð−ξÞ. We can
exactly solve the SD equation (3) to obtain the Green’s
function GðτÞ [25]. At τ ¼ 0, the solution reads

Gxyð0Þ ¼
1

2

�
1 −i tanh ½h0ðXÞ�

i tanh ½h0ðXÞ� 1

�
; ð7Þ

with X ≡ −2iG12ð0Þ. We can read off the SC equation

X ¼ − tanh ½h0ðXÞ�; ð8Þ
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which can alternatively be derived from (5). In general, we
have −1 < X < 1 regardless of the form of the potential.
Two relevant regimes of (8) are when jXj → 0 and jXj → 1,
corresponding to weak and strong correlations between the
two sites, respectively.
From the path integral in the large-N limit, we can study

the thermodynamic properties of the system [25]. In
particular, we find the entropy density S=N ≡ s to be

sðXÞ ¼ −
1þ X
2

log
1þ X
2

−
1 − X
2

log
1 − X
2

; ð9Þ
where X satisfies the SC equation (8). The fact that the
entropy density function (9) does not explicitly depend on
the interaction potential signifies the first main result of this
work. This independence is a feature of the entropy only,
while other quantities, like the free energy, which is given
by F ¼ N½hðXÞ − sðXÞ� þOð1Þ, indeed depend on the
form of the potential. Also, this independence of the
entropy on the interaction potential is spoiled by 1=N
corrections [25]. Remarkably, from (9), we see that
S → N log 2þOð1Þ when jXj → 0 and S → 0 when
jXj → 1 [25]. Let us emphasize that, since the large-N
limit is always taken first, the entropy is finite only when
X ¼ 1 and is otherwise linearly divergent with N.
Four-site chain.—We can think of the two-site system as

being part of larger chains and take advantage of the results
derived above to study the entanglement structure. As an
example, we consider an open chain of length L ¼ 4 at zero
temperature. Although our techniques are valid for any
potential, we consider here a specific instance hx;xþ1ðξÞ ¼
μxð1 − eJξÞ=ð2JÞ ¼ hxþ1;xð−ξÞ, where J > 0 is the inter-
action strength and μ1 ¼ μ3 ≡ μa, μ2 ≡ μb denote hopping
parameters. All remaining entries of hxy are zero. For
convenience, we introduce the hopping ratio r≡ μa=μb. To
access the ground state properties in the large-N limit, the
hierarchy of parameters N ≫ μbβ, μaβ ≫ 1 needs to be
taken into account. We solve the SD equation (3) and obtain
GðτÞ [25], which at τ ¼ 0 reads

Gxyð0Þ¼
1

2

0
BBB@

1 isinθ 0 icosθ

−isinθ 1 icosθ 0

0 −icosθ 1 isinθ

−icosθ 0 −isinθ 1

1
CCCA; ð10Þ

where the parameter θ is determined by the SC constraint
derived from (5):

tan θ
2

¼ G12ð0Þ
2G23ð0Þ

¼ h012ð−2iG12ð0ÞÞ
h023ð−2iG23ð0ÞÞ

¼ reJðsin θ−cos θÞ: ð11Þ

This transcendental equation may be solved numerically
and has a unique solution for J < Jc and three solutions for
J > Jc, where the critical value can be proven analytically
to be Jc ¼

ffiffiffi
2

p
[25]. This multivaluedness of the SC

equation indicates that the system exhibits a discontinuous
behavior as a function of r, now to be seen as a control

parameter. We identify the thermodynamically dominant
solutions by minimizing the free energy F obtained from
the effective action (2) [25]. This free energy is shown in
Fig. 1 for different values of the interaction strength below,
at, and above the critical point. We see that the free energy
exhibits nonanalyticity at r ¼ 1=2 for interaction strengths
J > Jc. Thus, the system is characterized two phases for
J > Jc and it undergoes a first-order quantum phase
transition [30] across r ¼ 1=2, the existence of which
constitutes the second main result of this work. At the
critical point J ¼ Jc, this transition is of second order.
Let us stress that this phase transition is present for a large
class of potentials other than the exponential [25]. The two
phases differ by the order parameter tan θ (11), which
characterizes the correlation structure via (10). Two limit-
ing regimes of this structure when r → 0 and r → ∞ are
shown in the insets in Fig. 1.
We now turn our attention to the study of entanglement in

the four-site model and consider a connected two-site
subregion A, which we take to be, e.g., the sites x ¼ 1, 2.
The reduced density matrix ρA of this system can be written
as a thermal density matrix of a two-site chain of the
form (6), with H now to be thought of as the one-sided
modular Hamiltonian. Its explicit form is not known in our
case, so we take as an ansatz the general form given in (1).
For this ansatz to describe a proper reduced density matrix,
ρA should reproduce the expectation values of local operators
in the subregion. In particular, it must reproduce the
correlations given by the Green’s function (10) restricted
to the subregion A. We must, therefore, impose a constraint
for the one-sided modular Hamiltonian at large N:

Gxyð0Þ ¼
1

N

X
j

TrðρAψ j
xψ

j
yÞ; x; y∈A; ð12Þ

FIG. 1. Free energy of the four-site chain with potential
hx;xþ1ðξÞ ¼ μxð1 − eJξÞ=ð2JÞ for different interaction strengths
J. We observe a nonanalyticity at r≡ μa=μb ¼ 1=2 for J above
the critical value Jc ¼

ffiffiffi
2

p
, signaling a phase transition. The two

phases of the system are characterized by the correlation structure
given by (10), whose limiting cases for r → 0 and r → ∞ are
shown in the two embedded diagrams.
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where Gxyð0Þ is given in (10). Equation (12) uniquely
determines the modular Hamiltonian only when J ¼ 0 [22].
Nevertheless, we can still use it to compute the entanglement
entropy for J ≥ 0. Indeed, we have shown that, for a density
matrix of the form given in (6), the entropy density of the
two-site system can be computed for any form of the one-
sided modular Hamiltonian ansatz and is given by (9).
Because of the constraint (12), sðXÞ needs to be evaluated on
the SC solution X ¼ −2iG12ð0Þ ¼ sin θ obtained from (11),
with X∈ ½0; 1Þ since θ∈ ½0; π=2Þ. In this way, even without
knowing the explicit form of ρA, we find that sðXÞ ¼ SA=N
is the entanglement entropy of subregion A. The resulting
entanglement entropy density as a function of r [recall X
depends on r via (11)] is shown in Fig. 2 for different values
of J. The phase transition reflects itself in the entanglement
entropy evaluated on SC solutions as it becomes discon-
tinuous for J > Jc.
von Neumann algebras.—Motivated by recent results in

holography [12,13,15–18], we study the classification of
operator algebras associated to subsystems of our four-site
model. Operator algebras can generally be classified into
three types, denoted as type I, II, and III [1,5,8]. Based on
the standard trace Tr, a type I algebra encapsulates a finite
entanglement entropy. Using Tr, entanglement entropy is
infinite in both type II and type III algebras. To further
distinguish the algebras, a key ingredient is the trace
functional, denoted by lowercase “tr” (to differentiate it
from uppercase Tr), which is defined to be a positive, linear,
and cyclic functional on the algebra [7,8]. In particular,
type II algebras allow for the definition of such a
trace functional, while type III algebras do not. For the
technical construction of operators in the algebra, we
closely parallel [7]. In our system of consideration and

in the N → ∞ limit, operators in AA consist of products of
finitely many Majoranas located in subregion A. In par-
ticular, these will act trivially on countably infinitely many
indices j of the Majorana color space.
Based on the results for the ground state entanglement of

our model, together with the operators inAA defined above,
we identify the operator algebras associated to subregion A
in different regimes of the correlation measure X ¼
−2iG12ð0Þ. This classification is shown in the phase
diagram inset in Fig. 2. When X → 1, the entropy SA → 0
[25]. This is consistent with our physical intuition, since we
expect the subsystems to completely factorize in this limit.
Thus, we find that AA is a type I∞ algebra when X → 1
[which implies r → ∞ by (11)]. The index in I∞ alludes to
the infinite dimensionality of the local Hilbert space.
When X < 1, the ground state is no longer factorized,

and the entropy (9) is infinite, therefore ruling outAA being
of type I. To specify the type, we resort to the definition of a
trace functional tr on AA. When the maximally entangled
state jΨi is in the Hilbert space generated by the algebra
AA, a well-defined trace functional is given by trðaÞ≡
hΨjajΨi, with a∈AA [7]. Importantly, when X ¼ 0, we
find that the entanglement entropy in our ground state
is infinite and maximal up to subleading corrections in
1=N [25]. This implies that our ground state can be mapped
to jΨi by applying finitely many Majorana operators.
Therefore, we conclude that the functional tr defines a
proper trace when X ¼ 0 [r ¼ 0 by (11)], thus unveiling
that AA is of type II1 only at this point; cf. Fig. 2.
As for the regime 0 < X < 1, corresponding to

0 < r < ∞ by virtue of (11), we find that the entanglement
entropy (9) is infinite but not maximal at leading order as
N → ∞. Therefore, our ground state cannot be mapped to
the maximally entangled state jΨi by finitely many local
operators, and, therefore, the algebraAA does not admit the
definition of a trace [7]. This implies that AA is of type III.
Recall that the first and second equalities in (11) impose SC
for generic potentials, and, therefore, the analysis above is
valid in the general interacting case.
In the free case J ¼ 0, where the entanglement

Hamiltonian ought to be quadratic in the fermions, the
classification of the algebras can be attained by studying
the spectrum of the modular operator Δ ¼ limN→∞ρA ⊗
ρ−1Ā [5,31–33]. Given this setup, we are able to compute the
large-N spectrum of Δ [25], finding SpecðΔÞ ¼ fλngn∈Z.
Here, the parameter λ is related to the correlations within
the subsystem as λ ¼ ½ð1 − XÞ=ð1þ XÞ�. When the modu-
lar operator has precisely this form, the associated operator
algebras are said to be of I∞ when λ ¼ 0, type II1 for λ ¼ 1,
and type IIIλ for λ∈ ð0; 1Þ. Such type IIIλ algebras are known
to arise for free fermions on a lattice [34].
At finite J, these considerations lead to transitions

between operator algebras of type II1 ↔ III ↔ I∞ in the
phase diagram; cf. Fig. 2. Given that the limit of the entropy
for r → 0 and r → ∞ is the same for other types of

FIG. 2. Entanglement entropy (9) of subregion A on solutions
to (11) as a function of r≡ μa=μb for different couplings J. Solid
lines denote all SC solutions, while a sample of physical solutions
minimizing F in Fig. 1 is marked with dots. The phase transition
is signaled by the discontinuity for J > Jc. Inset: von Neumann
type of the algebra AA in different regimes of the phase diagram.
Each type is denoted by a different color, and the black dot (line)
represents a phase transition of second (first) order.
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potentials, we expect similar phase diagrams to hold for
in those cases when J is finite. Our setup’s analytical
tractability enables us to study the limit J → ∞, where the
solution to the SC equation (11) for the class of interaction
potentials with exponential behavior is X ¼ Θðr − 1=2Þ,
with Θ the Heaviside step function. In this limit, the
entanglement entropy is SA ¼ Θð1=2 − rÞN log 2þOð1Þ
[25]. This results in a direct transition of algebras II1 ↔ I∞
at r ¼ 1=2, which coincides with the phase transition
undergone by the system. The transitions between different
types of local operator algebras across the phase diagram
provide the third result of our work.
Closed periodic chains.—To showcase the generality of

our methods, we now consider closed periodic chains.
In particular, we focus on a closed chain consisting of L
sites with a Hamiltonian of the form (1) with staggered
interaction

hxyðξÞ ¼ δxþ1;y½hbðξÞδmod2x;0 þ haðξÞδmod2x;1�
þ δx−1;y½hað−ξÞδmod2x;0 þ hbð−ξÞδmod2x;1�; ð13Þ

where ha and hb are generic functions and we have the
periodic identification Lþ x ∼ x. Notice that, by defining
cells consisting of adjacent sites interacting by hb, we can
leverage translational invariance with respect to these cells to
solve the model in momentum space [25]. We find that the
Green’s function is determined by an implicit dependence on
its own entries. In particular,G is an implicit function of only
the correlations within a given cell G2x;2xþ1ð0Þ and those
connecting adjacent cells G2x−1;2xð0Þ. This dependence
manifests itself via the parametrization

1 − v
1þ v

¼ h0að−2iG2x−1;2xð0ÞÞ
h0bð−2iG2x;2xþ1ð0ÞÞ

; ð14Þ

where v∈ ½−1; 1�. By the aforementioned translational
invariance, the correlations entering (14) are independent
of x. Explicit expressions for G2x−1;2xð0Þ and G2x;2xþ1ð0Þ at
zero temperature and in the limit L → ∞ can be found in
terms of v itself and read

G2x−1;2xð0Þ ¼
i
2
gð−vÞ; G2x;2xþ1ð0Þ ¼

i
2
gðvÞ; ð15Þ

gðvÞ ¼ 2sgnðvÞ
π

�
Eð1 − 1=v2Þ
1þ 1=v

þ Kð1 − 1=v2Þ
1þ v

�
; ð16Þ

with KðξÞ and EðξÞ the complete elliptic integrals of the first
and second kind, respectively. In the spirit of our methods,
we can impose self-consistency inserting (15) into (14)
and solving for v. The model is, thus, completely solved
once this value of v has been found. Notice that v → −v
exchangesG2x−1;2xð0Þ andG2x;2xþ1ð0Þ by virtue of (15), and
this amounts to exchanging ha and hb. Since gð1Þ ¼ 1, the
limits v → 1 and v → −1 correspond to maximal correla-
tions between nearest-neighbor sites within and across cells,
respectively. For periodic chains with L ¼ 4, we can parallel

the previous discussions on the entanglement structure and,
consequently, on the typification of the operator algebras
across the phase diagram.
Conclusions and future work.—We determine the phase

structure and entanglement for a large class of Majorana
modelswithOðNÞ symmetry in the large-N limit. Despite that
we mostly focus on models defined on few sites, these are
enough to exhibit a rich phase diagram and entanglement
structureyet also sufficiently tractable in the large-N limit such
as to explicitly compute key quantities like free energy and
entanglement entropy. The vonNeumann algebras underlying
this entanglement structure are summarized in Fig. 2.
Remarkably, all three types of algebra are featured throughout
thephase diagramofourmodel. Therefore, our class of exactly
solvable models gives rise to nontrivial operator algebra
transitions in a highly controllable way. This allows us to
track the parameter regimes in which the correlations signal
the factorization of the ground state into a product state, as
shown in Fig. 1. While here we use correlations for character-
izing factorization, a state-based approach consists of using
entanglement orbits [18]. In spite of the different approaches
used, we see a similar relation between factorization and the
value of entanglement entropy. Analyzing these similarities is
a promising line of future investigations.
Intriguingly, the algebra transition we find in the strong

coupling limit J → ∞ coincides with a phase transition that
connects a factorized and a nonfactorized state, similarly to
the holographic Hawking-Page phase transition [12,13].
Differently from our case (i.e., II1 ↔ I∞), this is a transition
between algebras of type I∞ and III1 as a function of the
temperature. Remarkably, we observe an analogous algebra
transition, although our model differs from previous works
in the context of holography [27–29,35–38], which con-
sider on-site random interactions leading to a nonzero
entropy at zero temperature.
Further relations to holography can be obtained by

including random disorder into our model by attaching
an SYK model to each lattice site. This enlarges the phase
diagram, and we expect the competition between spatially
inhomogeneous hoppings and the locally random disorder
to change the renormalization group properties of critical
points. Additionally, it is promising to investigate the
mentioned connections with Brownian SYK [26,39–41].
Since our setup allows for general spatially disordered

interactions, it is also relevant for further infinite disordered
chains [42,43], where the hopping parameters are distrib-
uted according to a binary aperiodic sequence. These so-
called aperiodic spin chains have recently been considered
[23,44–46] as a step toward establishing a holographic
duality on discrete spaces. Finally, in the free case, our
model can be interpreted as an instance of a Kitaev
chain [47], which has physical realizations in terms of
superconducting quantum wires. It would be intriguing to
investigate the changes to this physical picture in the
interacting case.
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