游客,您好,欢迎您进入科技信息监测服务平台! 登录 | 注册  帮助中心
您当前的位置: 首页 > 编译内容

编译内容

编译服务: 空间引力波探测领域 编译者: 闫亚飞 编译时间: 2022-8-15 点击量: 202
近期,中国科学院上海天文台与上海交通大学的联合研究团队在仙女座星系( M31 )结构研究方面取得重要进展。研究团队提出了在星际气体观测数据中搜寻激波的新思路,从而给出了 M31 星系是一个棒旋星系而非普通旋涡星系的独立证据,并利用流体动力学模拟重现了气体中激波的主要观测特征。相关研究成果近期发表于国际天文权威期刊《天体物理期刊》( The Astrophysical Journal )。该研究成果于7月25日被美国天文学会(AAS) Nova网站选为研究亮点,以“仙女座星系中的棒”(A Bar in the Andromeda Galaxy)为题在网站头条报道(图1)。该网站从美国天文学会出版的众多天文期刊中每周精选约五篇论文作为研究亮点,分享给天文学界。
图1. 研究成果于7月25日被美国天文学会(AAS) Nova网站选为研究亮点,以“仙女座星系中的棒”(A Bar in the Andromeda Galaxy)为题在网站头条报道。

旋涡星系分为正常旋涡星系与棒旋星系两类。棒旋星系中心的棒是由恒星构成的长条形结构,它是驱动旋涡星系内部长期缓变演化的最重要内因。 M31 是距离我们最近的旋涡星系。长久以来,天文学家一直试图确定 M31 的星系形态,从而给出它在著名的哈勃星系分类图中的位置。但由于 M31 相对于我们的视线方向几乎是一个侧向星系,因此很难直接从星系图像上确定其内部的结构特征。在此之前,天文学家根据恒星等亮度线的扭曲提出 M31 可能包含一个星系棒,但这一现象并不一定只能由棒产生,也可以由一个不转的椭球状核球产生[1][2][3][4]。气体观测数据也暗示 M31 可能有棒存在,如显著的气体非圆周运动,扭曲的零速度线等。但其他机制 —— 例如与另一个星系的并合过程 —— 也会导致类似的特征。所以作为一个具有显著经典核球成分的星系[5],对于 M31 是否是一个棒旋星系仍然存在很大争议,而确定 M31 的内部结构将为天文学家更好地理解我们的近邻星系的结构演化提供巨大帮助。
为解决这一问题,研究团队提出了在星际气体观测数据中搜寻激波的新思路,从而给出了 M31 星系是一个棒旋星系而非普通旋涡星系的独立证据,并利用流体动力学模拟重现了气体中激波的主要观测特征。
当旋涡星系的棒驱动星际介质内流时,会引发激波。这种激波会产生棒旋星系最为显著的特征之一 —— 在棒前导侧( leading side )会形成一对尘埃带,其尺度与棒长相仿。上海交通大学沈俊太教授表示: “ 激波会在位置 - 视向速度图( position-velocity diagram )上展现出急剧的速度跳变特征。而这种剧烈的速度跳变特征能够被积分视场光谱仪( integral field unit, IFU )捕获并分辨。如果这些激波特征符合棒旋星系激波的规律,那么就能明确证明 M31 星系中存在棒。 ”
基于这个思路,研究团队利用最新的积分视场光谱仪 VIRUS-W 对 M31 中电离氧气体发射线 [OIII] 的观测数据,并结合中性氢原子气体 (HI) 的数据,提取了垂直于星系盘主轴方向不同切片内的位置 - 视向速度图,最终通过边缘检测算法识别出了 M31 星系 [OIII] 和 HI 数据中的激波特征(图 2 )。
图2. M31星系在远离我们一侧的[OIII]的激波特征。波长为500纳米左右的二次电离氧[OIII]双发射线是可见光谱中的禁线,只可能在非常低密度的宇宙环境下出现,是VIRUS-W光谱仪波长范围内的最主要发射线之一。数据点代表[OIII]的观测数据,颜色代表流量密度。每一个子图对应一个垂直于盘主轴的切片。X代表切片在盘主轴上的位置。黑色曲线代表数据点被平滑后的结果。红色粗线,细线和虚线分别代表最强的,较强的和较弱的激波特征。大多数激波特征分布在星系的远端(在盘主轴下方)。

研究团队发现,这些激波特征较为规律地分布在千秒差距 (kpc) 量级的尺度上(图 3 )。目前最新的恒星动力学模型认为 M31 星系的棒主轴角度与盘主轴相差约 17 度[6]。如果这样的假设成立,那么激波特征的确主要分布在棒的前导侧,这与棒旋星系的理论预期非常一致。
图3. [OIII]和HI激波特征在M31星系内的空间分布。背景光学图像来源于哈勃太空望远镜,Subaru和Mayall望远镜。红色圆圈和蓝色三角形分别代表[OIII]和HI中的激波位置。实心,空心和虚框表示的标志分别代表最强的,较强的和较弱的激波特征。虚线代表最新动力学模型中的棒主轴方向。

“ 我们发现这些激波特征主要分布在 M31 的核球区域,其速度跳变最强可超过 170 千米 / 秒,速度梯度可达 1.2 千米 / 秒 / 秒差距。 ” 上海天文台博士研究生冯子轩表示: “ 我们面临的问题是,基于旋转星系棒势场的流体数值模拟能否重现这样急剧的激波特征。 ” 研究团队结合最新的恒星动力学模型,模拟了不同棒转速、气体有效声速和观测视角下的气体运动,最终得到了与观测结果基本一致的模型(图 4 )。模型中的激波位置和速度跳变特征与观测中的基本一致,该模型棒的转速为 20 千米 / 秒 / 千秒差距 , 气体有效声速为 30 千米 / 秒。棒主轴的方位角和气体盘倾角分别为 54.7 度和 77 度。研究团队还测试了用无旋转的棒来类比椭球状核球结构,并发现无旋转的棒无法产生激波,也不会有明显的速度跳变特征。这些发现都进一步表明 M31 拥有一个旋转的中心棒,而非一个静态的椭球状核球。
图4. M31星系的气体动力学模型。左侧展示了M31模型投影至天空平面后(左上角)和投影前(左下角)的气体面密度分布。其中粉色圆圈和紫色三角形分别代表[OIII]和HI数据中的激波位置。右侧展示了不同切片对应的位置-视向速度图,黑色数据点代表模型中气体的速度分布,红色和蓝色数据点分别代表[OIII]和HI的观测数据。右下角为右上角图片在激波处的放大版本,虚线代表无旋转的棒模型。

研究团队认为,本次研究给出了 M31 星系有棒结构的明确的观测证据,这有助于揭示 M31 结构形成及动力学演化历史,而确定了 M31 的棒结构将为天文学家更好地理解我们的近邻星系的结构演化提供巨大帮助。研究团队将在后续研究中将观测到的气体特征与更多气体动力学模拟进行详细比较,以期更好地了解 M31 中心的气体特征以及明确 M31 棒的主要参数。
中国科学院上海天文台博士研究生冯子轩、上海交通大学天文系博士后李智为论文的共同第一作者,上海交通大学沈俊太教授为通讯作者。本项成果的主要合作成员为德国马普学会地外物理研究所的 Ortwin Gerhard 团组。该研究得到了国家自然科学基金委、科技部、上海交通大学等机构的资助。本工作的数值模拟使用了上海天文台 Cluster 集群和上海交通大学天文系 Gravity 集群。
注释:
[1] Stark, A. A. 1977, ApJ, 213, 368
[2] Gerhard, O. E., Vietri, M., & Kent, S. M. 1989, ApJL, 345, L33
[3] Méndez-Abreu, J., Simonneau, E., Aguerri, J. A. L., & Corsini, E. M. 2010 , A&A, 521, A71
[4] Costantin, L., Méndez-Abreu, J., Corsini, E. M., et al. 2018, A&A, 609, A132
[5] Athanassoula, E., & Beaton, R. L. 2006, MNRAS, 370, 1499
[6] Bla?a Díaz, M., Gerhard, O., Wegg, C., et al. 2018, MNRAS, 481, 3210

论文链接: https://iopscience.iop.org/article/10.3847/1538-4357/ac7964
AAS Nova报道链接: https://aasnova.org/2022/07/25/featured-image-a-bar-in-the-andromeda-galaxy/
科学联系人:
冯子轩,中国科学院上海天文台,fengzx@shao.ac.cn
沈俊太,上海交通大学物理与天文学院,jtshen@sjtu.edu.cn
附件下载: .
 

提供服务
导出本资源